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1.   FOREWARD 

A justifiable criticism of artificial neural net models frequently voiced by biologists and 
neuroscientists is that they are minimal in nature as evident in the extreme functional simplicity of 
the neuron models employed in comparison to the biological neuron. 

Neural networkers are quick to respond to this criticism by pointing out that despite such 
simplification, neural networks consisting of simple processing elements (neurons) exhibit rich 
collective emergent properties and that significant progress in machine learning, associative storage 
and recall, and solution of optimization problems have taken place in the past decade leading to 
significant growth in basic knowledge about self-organizing systems and collective computing and 
to realistic applications. 

Despite this progress, neural networks continue to be plagued by several widely 
acknowledged limitations. These include (a) general inefficiency of learning algorithms, (b) 
inability to handle spatio-temporal information in a natural way, and (c) general inability to 
provide higher-level functionality such as feature binding, cognition, distortion invariance*, 
separation of object from ground (background), inferencing, reasoning and other functions known 
to be carried out by the cortex almost effortlessly. It is reasonable to assume that the functional 
complexity of the cortex is a consequence of both the functional complexity of cortical neurons and 
the intricate interaction patterns between different neuronal pools in the cortex. 

Motivated by these observations, and by our findings in the study of cognitive networks 
for automated target recognition, we have carried out a study aimed at producing biology-oriented 
neuronal models that duplicate as much as possible the functional complexity of the living neuron 
while being realized in a structurally simple and power efficient embodiment. The availability of 
such functionally complex but structurally simple neurons of low power consumption can lead to 
computing structures (neural networks) in which one can model and study the dynamics of cortical 
networks and some of the higher-level processing functions they exhibit. Introducing higher-level 
functionality in neural networks will significantly enhance the power of neurocomputing, leading 
to a host of new applications, and emphasizing the viability of the neural paradigm for information 
processing. 

The results of the above study was the development of the bifurcating neuron concept and 
model. Our work to date shows that the bifurcating neuron combines functional complexity 
approaching that of the biological neuron with structural simplicity and low power consumption 
because of its spiking nature. All of these are attractive attributes for simulation or hardware 
implementation of a new generation of neural networks possessing greater functional complexity 
and computing power than present day networks and specially suited for study and development of 
higher-level functionality. To date our work shows that under periodic activation the bifurcating 
neuron is capable of firing in several modalities and can bifurcate (rapidly switch) between these 
modalities depending on the nature of its input As such, it appears capable of encoding its spatio- 
temporal input, the aggregate of all spike trains incident at any time on synaptic sites of its 
dendritic-tree, (which we call incident spike wavefront), in a complicated manner. This functional 
complexity stems from the ability of certain incident spike wavefronts to produce periodic episodes 
in the neuron's activation potential. The focus on periodic activation stems from the fact that in a 
population of synchronized (phase-locked) bifurcating neurons, the activation potentials formed by 
dendritic-tree processing are periodic. Depending on the nature of the incident spike wavefront, 
i.e., whether it is incoherent, partially coherent or coherent**, the bifurcating neuron can behave 

* Invariance of object or signal recognition in the presence of changes in object size, orientation, position, and 
signal-to-noise ratio. 
** A coherent incident spike wavefront is one in which all the spike trains incident on the neuron are correlated. 



as a sigmoidal neuron or as a periodically driven oscillator neuron capable of producing a host of 
regular phase-locked firing patterns or chaotic firing. There is mounting evidence, from 
physiological observations and numerical simulation, that phase-locked (synchronized) firing states 
of cortical networks underlie cognitive functions and that chaos might be playing a useful role in 
their dynamics. We expect the functional complexity of the bifurcating neuron to manifest itself in 
the complexity of operations and computing power of bifurcating neural networks which are 
specially suited for use in the modeling and study of cortical functions. 
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NEURODYNAMICAL   SYSTEMS   FOR   COGNITION 
AND   TARGET   IDENTIFICATION 

The research effort described in this final report was concerned with the study and 

development of algorithms and systems for automated target recognition based on the neural 

paradigm for information processing that are specifically intended to operate in complex 

uncontrolled environment like that frequently encountered in automated target recognition (ATR), 

robotics, and autonomous systems in general. An automated recognition system for identifying 

handwritten zip code numerals for the postal service constitutes an example of an automated 

recognition system operation in a complex controlled environment Complex, because of the wide 

variation in handwriting between individuals; controlled, because the system is strictly designed to 

recognize handwritten zip code numerals, and once operational no one is going to recognize 

anything else other than handwritten numerals. Another example of a complex controlled 

environment occurs in automated recognition by industrial robots of manufactured parts. Clearly 

there are many situations where an automated identification system is required to operate in the 

more challenging complex but uncontrolled environment where it can encounter objects or patterns 

other than those it was intended for. In such instances the recognition task becomes considerably 

more difficult. 

We discuss next the reasons for this difficulty, then go on to describe earlier work we have 

carried out to overcome these difficulties by adopting an approach based on nonlinear dynamical 

systems and certain general attributes of higher-level cortical information processing. Finally we 

discuss how this earlier work has led us to develop the concept of bifurcating neuron as a building 

block for a new generation of neural networks suitable for the study of higher-level functions such 

as feature-binding and cognition. We also give a summary of the most important results obtained 

from a detailed investigation of the bifurcating neuron concept 

A. Background and Statement of the Problem Studied: The first step in any 

automated object recognition system is feature-extraction which is the production of invariant 

object features from sensory data. The invariance is with respect, distance, orientation, 

displacement and signal-to-noise ratio (SNR) which includes illumination level and variability. 

The invariant features are needed to make the recognition system robust. The literature and 

methodology of feature-extraction is quite varied and extensive and it is not the intent to discuss it 



here. For our purposes here, it suffices to note that once a suitable working feature extraction 

method is selected the next and crucial step in the automated recognition process is feature-binding 

or linking where the identity of the object is inferred from its invariant feature vector. The most 

straight forward means for feature-binding is a look-up table where the feature vector of an 

unknown object is compared against a library of feature vectors belonging to objects known to 

occur in the system's working environment A best fit criterion is used then to identify the object. 

A second, and more sophisticated approach to feature-binding is to use a multilayer feed-forward 

neural network, usually trained by an error-back-propagation, (e.b.p.) algorithm, to map the 

feature-vectors of a set of objects into associated identifying labels. When this training is carried 

out properly, the resulting network has generalization ability and certain level of robustness with 
SNR. 

It is well known to practitioners in the field that both the look-up table approach and the 

feed-forward e.b.p. neural net classifier approach can not be used in systems intended to work in 

an uncontrolled environment. There are two reasons for this. One is that the number of objects 

that can occur in an uncontrolled environment is not limited but can be very large indeed and the 

system must be able then to distinguish between all the possible objects or at least between the set 

of objects it is designed for and novel objects. This usuaUy makes the learning task very 

complicated and lengthy if not impractical because learning in neural networks is NP-complete 

which means that learning time and network complexity grow exponentially with the size of the 

learning task, i.e. with the number and complexity of the objects the system must learn. This 

constitutes a major issue in neurocomputing (artificial neural networks (ANNs)) and machine 

learning in general and is summarized by the simple question: how can effective learning be 

achieved in a network or machine intended to operate in a complex uncontrolled environment. 

Our studies indicate that the problem of learning in complex uncontrolled environments 

may be traced to the fact that most ANNs and learning algorithms today have no cognitive ability. 

By cognition, is meant here ability of the network to distinguish on its own between familiar 

objects, i.e., objects belonging to its training set and novel objects not belonging to the training set. 

In many operating environments of practical interest, the occurrence of novel objects is 

unavoidable. The danger then is that without cognition an ANN can end up misclassifying a novel 

object as one belonging to its training set and this is obviously not acceptable and can be even 

catastrophic in certain situations. To overcome this problem, the training of ANNs or machine is 

often modified to either: (a) Include training on negative examples, i.e., on the class of novel 

objects that could occur in the ANNs environment. This approach is unproductive because it 

increases the size of the network and training time becomes unacceptably long, (b) Incorporation 



of novelty detectors that would detect and measure attributes of the objects that could help in 

deciding whether an object is novel or not This approach is unattractive because novelty detectors 

often add complexity and cost to the system. 

To make progress in this difficult problem we have adopted a nonlinear dynamical system 

approach to feature-binding and cognition which leads to ways of circumventing the issue of NP- 

completeness of learning. The approach draws on attributes of cortical information processing. 

The cortex is that part of the brain where higher-level functions, such as feature binding, cognition, 

reasoning and all the other interesting complex information processing functions we humans do, 

are believed to reside. Cortical neurons and populations are nonlinear and highly interconnected. 

Therefore one can view the cortex as high-dimensional nonlinear dynamical systems. Nonlinear 

dynamical systems exhibit three types of phase-space attractors:  Point, periodic, and chaotic. 

Most attractor type neural net models being dealt with today employ point attractors to provide 

associative memory, optimization, and learning functions, but lack cognition. An inavoidable 

question then is: what role could periodic, and chaotic attractors play and could they be used to 

achieve higher-level neural functions such as feature-binding and cognition, and how could they be 

incorporated in the design of ANNs to enhance their performance by enabling them to compute 

with such attractors.  The pioneering work of Freeman and co-workers (see for example: C. 

Skarda and W. Freeman, Behavioral and Brain Sciences, 10, 161-165, Cambridge Univ. Press, 

1987) suggests that bifurcation in networks that compute with diverse attractors could be a 

mechanism for cognition.   We have applied this hypothesis successfully to the design of a 

composite cognitive neural network for automated target identification [1] (see also more detailed 

account given in Appendix I) which provided distortion invariant identification of microwave test 

objects from a single echo or signature, thus solving the long-standing problem of 3-D object 

recognition independent of range, orientation, signal-to-noise ratio, and location within the field of 

view for this particular sensing and recognition modality. This network computes with diverse 

attractors and is capable not only of differentiating between and identifying familiar objects 

successfully, but also employs bifurcation* between a periodic attractor and a point attractor as the 

mechanism for feature-binding and cognition; and differentiating between familiar and novel 

objects. An important aspect of the system is the use of segmentation of the signature vector (echo 

or response vector of the target for a given aspect) during the training and interrogation phases in 

order to avoid ambiguities and enhance the probability of recognizing novel objects as such without 

sacrificing performance in recognizing learned (familiar) objects. 

* Bifurcation means sudden change in behavior or computing modality depending on change in a parameter of the 
system (here whether the signature presented to the network belongs to a familiar or novel object. 



The bifurcation/cognition capability in the system we just described was furnished by a 

periodic attractor network which required synchronous updating of the neurons for proper 

operation and delicate setting of learned weights to make novel objects trigger the bifurcation from 

periodic to point attractor. Although there is no problem in providing synchronous update in a real 

neural system, the question of how would synchronous update occur in cortical networks is a valid 

one to raise in this connection because the original approach in our designing cognitive nets, was 

brain-inspired.   Since it is generally agreed that the brain does not contain a central clock and there 

is no evidence that the a rhythm serves such function, one can ask next: how could synchronicity 

and coherence spontaneously emerge in cortical networks especially when noise in biological 

(cortical) neurons is known to cause them to respond inconsistently to the same repeated stimulus? 

Raising this question has led us to develop the concept of bifurcating neuron as a model of the 

excitable biological membrane which is capable of providing synchronicity through phase-locking 

and of exhibiting functional complexity paralleling that of the living neuron but in an extremely 

simple and power-efficient structure which is important for hardware implementation of cortical 

neuron models and networks. Bifurcations between attractors in such networks could provide a 

more natural and reliable mechanism for feature-binding and cognition then the aforementioned 

periodic attractor network and may have other useful applications. 

B . Summary of the Most Important Results: Adopting the nonlinear dynamical 

systems view of the cortex and applying it to the ATR problem and to neurocomputing in general 
has so far led to the following accomplishments in our work: 

1. We introduced a new function to neural networks to be added to the repertoire of functions 

they already possess: association, optimization, and learning with generalization. We add now 

cognition and this enhances the power of neurocomputing because: (a) Without cognition a 

neural-based identification system, intended to operate in a complex uncontrolled environment is 

useless because a novel object can trigger erroneously the response belonging to one of the familiar 

(learned) objects, (b) With cognitive ability the system can be made to respond more 

appropriately; for example, ignore its response in instances of novel objects or alter its mode of 

operation by reverting to a learning mode where it can proceed to learn the novel object when it 

occurs, and add it to its repertoire, (c) With cognition one can consider now designing banks of 

relatively small neural networks (neural modules) which can be trained to recognize only a subset 

of the objects in the environment to the exclusion of all others. This leads to neural modules of 

manageable size, each designed to recognize a small set of objects with the entire assembly of 

modules being able collectively to recognize a larger set of objects. This is perhaps the most 



significant implication for introducing cognition in neural systems. The training time of the smaller 

neural modules is considerably shorter than learning the entire problem with one large network 

which for many practical-sized problems is not feasible with present-day learning algorithms. 

Cognition circumvents therefore the scaling problem associated with learning large tasks, which as 

stated earlier is NP-complete. (d) Cognition provides a system with a rudimentary level of 

awareness of its environment and this is a step in the direction of imparting other higher-level 

functions to neural networks. 

2. Development of the concept of bifurcating neuron [2]-[4] that combines functional 

complexity paralleling that of the living neuron with structural simplicity that facilitates hardware 

implementations, opens the way to constructing a new generation of neural networks that could 

exploit synchronicity and coherence in performing higher-level functions and which can employ all 

three types of attractors to achieve such functions. This would introduce essentially a new 

paradigm in neurocomputing where complexity, bifurcation, and chaos on the single neuron level 

become important aspects of neurocomputing. 

Specific accomplishments in our bifurcating neuron and bifurcating neural networks research are: 

Developed a bifurcating neuron theory that is descriptive, predictive, and quantitative. 
• Developed analytical and numerical simulation tools for characterizing the way a bifurcating 

neuron encodes periodic components or episodes appearing in its activation potential. 
Periodic activation arises when a network of bifurcating (spiking) neurons enters phase- 
locked firing. The characterization is mostly in terms of a bifurcation diagram, (see 
discussion below). 

• Obtained increasing evidence that erratic (or chaotic) firing of the bifurcating neuron, which 
occurs under specific periodic activation conditions, can be a source of adaptive noise for 
annealing bifurcating nets, i.e., can aid network entrainment (help it arrive at a phase-locked 
firing state) which is analogous to annealing of sigmoidal nets into states of local or global 
energy minima in order to arrive at optimal solutions. 

The bifurcating neuron effort was also motivated by the observation that the functional 

complexity of present-day dynamical (recursive or attractor-type) neural networks stems primarily 

from the collective behavior of neurons that are functionally simple nonspiking processing 

elements (e.g. sigmoidal or binary (McColloch-Pitts) neurons). In contrast, biological neurons in 

the cortex, where feature-binding, cognition, inferencing and other higher-level processing are 

believed to take place, are functionally very complex processing and encoding elements. It is ' 

reasonable to believe that the functional complexity of such neurons, traceable to the rich and 

complex dynamics of the driven excitable biological membrane responsible for their spiking 

behavior, would underlie the functional complexity and collective computating power of cortical 

networks. Development of artificial model neurons that emulate the functional complexity of the 

cortical neuron is therefore desirable because it yields the ultimate processing element for use as 



building-block in a new generation of neural networks that compute with diverse attractors and 

seek to achieve vastly enhanced processing and learning power. The spiking nature of neurons in 

such networks would enable preserving the relative timing of action potentials and the introduction 

of notions of coherence, synchronicity and phase-locking. The emergence of synchronicity and 

coherence means that neurons in such networks can find themselves being subjected to correlated 

incident spike patterns which give rise via linear and nonlinear dendritic-tree processing (filtering 

and smoothing operations) to periodic activation potentials that drive the excitable "membrane" 

dynamics of the neuron which is the origin of complexity alluded to earlier. 

Thus motivated by these observations and also by the results of our preceding work on 

cognitive automated target recognition (ATR) [1] we have carried out a systematic study aimed at 

producing biology-oriented neuronal models that preserve as much as possible of the signal- 

processing-related functional complexity of real cortical neurons but can be realized in structurally 

simple and power efficient embodiment.  The result was the bifurcating neuron model.  The 

investigation involved analyzing the dynamics of the periodically driven integrate-and-fire (I&F) 

model neuron, a mono-ionic simplification of the well known Hodgkin-Huxley model for action 

potential generation in the excitable biological membrane and revealed that the firing behavior can 
be described by an iterative map of the phase interval [0-2TI] onto itself which we call a phase- 

transition map (PTM) [2]-[4]. Like other maps of the interval onto itself, the PTM can be studied 

employing the tools of nonlinear dynamics.   This provides a novel way for viewing and 

characterizing the micro-neurodyhamics (neurodynamics on the single neuron level) in recursive 

networks in terms of a bifurcation diagram which shows the extreme functional complexity of the 

periodically driven I&F neuron model that is achieved despite its relatively simple structure. In the 

absence of periodic activation the I&F neuron reverts to the usual sigmoidal response (sigmoidal 

dependence of firing frequency on activation potential). Because the complex behavior of such 

model neuron can be described best by a bifurcation diagram we have named it the bifurcating 
neuron. 

To achieve these results we developed unique analytical, simulation, and experimental tools 

for characterizing the performance of several embodiments of the periodically driven I&F neuron. 

As a result we were successful in developing a bifurcating neuron circuit whose bifurcation 

diagram (see Figure 1) exhibited, full-blown chaotic firing in addition to several phase-locked 

periodic firing modalities that include period-m phase-locked firing, aperiodic firing, and 

intermittency, i.e. a complex range of firing modalities, depending on parameters of the driving 
signal. In this diagram Gn is the relative-phase of the n-th spike fired by the neuron measured 

relative to the immediately preceding peak (or zero crossing) of the periodic driving signal. The 



parameters fs and a are respectively the frequency and amplitude of the cosinusoidal driving signal. 

The bifurcating neuron circuit employed utilized time-delayed modulation of the restoring current 
source (circuit diagram omitted for lack of space). The chaotic firing ability of this neuron was 
verified by computing the Lyapunov exponent of the orbits 0n, n=l,2 .. observed for certain 
values of the (fs> a) parameters. For complete description of the behavior of the bifurcating neuron 

one needs obviously a set of such bifurcation diagrams, one for every possible value of the 
amplitude a. Contrasting this with the simple transfer function of firing frequency vs. activation 
potential for sigmoidal neurons gives immediately an idea of the complexity and richness of 
behavior one can expect to observe in bifurcating neural networks. Learning to harness such 
richness and complexity to achieve feature-binding, cognition, and other higher-level functions is 
the goal of our research. 

6.28 

Measured Phase Bifurcation Diagram of PUTON 
with Time-Delayed Dynamics of Restoring Current Source 
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Fig. 1. Measured bifurcation diagram for a Programmable Unijunction Transistor Oscillator 
Neuron (PUTON) embodiment of the bifurcating neuron employing time delayed dynamics of 
restoring current source. The fractal (self-similar) and complex structure of the diagram, which 
includes phase-locked ordered firing and chaotic firing regimes, promise to make the bifurcating 
neuron the processing element of choice in dynamical microcomputers that compute with diverse 
attractors and employ synchronicity, bifurcation and chaos in their operation in order to achieve 
significant improvement in capabilities and performance over present-day neural networks 
especially for feature-binding and cognition. 



Continuation of the research reported here is being focused on further simplification of the 
chaotic bifurcating neuron circuit. Our goal is to develop the simplest bifurcating neuron circuit 
that can serve as paradigm for complexity and chaos on the single neuron level in dynamical 
artificial spiking neural networks. A more general and long-term goal of our research program is 
to demonstrate that such functional complexity on the single processing element level is the 
instrument by which significant enhancement of the capabilities of present-day neural networks can 
be achieved in order to make them more suitable for use in solving practical problems besides 
feature-binding and cognition, like continuous speech processing, complex control, and in many 
other diverse applications such as modeling and simulation of populations of coupled biological 
oscillators for better understanding of biological clocks and cardiac dynamics and arrythmia. We 
believe we are at the dawn, if not in the midst, of a new era in computing, that of dynamical 
computing in networks of structurally simple but functionally complex processing elements. 

9 
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Abstract 

We define a cognitive neural network as one capable of not only differentiating 

between familiar objects (those it has been trained on) but to also differentiate 

on its own between familiar and novel objects (the set of all other objects). We 

maintain that imparting such cognitive ability to neural networks has far reaching 

implications on the ability to design practical networks. We illustrate our thesis by 

an example of designing a composite hierarachial network for cognitive automated 

target identification. The main thesis is: By imparting cognition to a network 

we control the set of objects within its awareness domain. The awareness domain 

is defined as the set of all objects the network is supposed to identify correctly. 

We show that by combining cognition with segmentation and bifurcation in a 

dynamical network that computes with diverse attractors we are able to circumvent 

the scaling problem associated with learning practical problems. 
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1    Introduction 

A longstanding problem in pattern recognition that has resisted satisfactory solution for 

a long time is that of recognizing three-dimensional objects irrespective of orientation 

(aspect), distance (range), location within the field-of-view (f.o.v.) and signal-to-noise 

ratio (SNR). This problem has come to be known as distortion invariant recognition and 

belongs to the class of inverse problems (see for example [1], [2]). 

In this paper we present a solution to this problem in the context of Automated 

Target Recognition (ATR) of 3-D radar scattering objects. There are two approaches 

to distortion invariant recognition of 3-D microwave scattering objects. One is based 

on forming images to be identified by human observers. The second approach involves 

machine recognition from individual signature vectors of the target. A discussion of these 

approaches and the reasons why the signature vector approach is preferable, specially 

when the neural paradigm is applied, are given in [3]. There it is also argued that the 

neural paradigm has potential for obviating the imaging approach altogether because it 

circumvents the practical and cost limitations of the latter. 

The paper is organized as follows. In Section 2, we discuss what cognition means 

and why it is important in the context of automatic target recognition (ATR) and other 

applications. Section 3 briefly describes the ATR concept and the associated terminology 

and framework. This will enable one to the understand examples from ATR used to 

illustrate certain issues in learning, which we discuss in section 4. In section 5 we 

examine the potential of garden variety neural networks as applied to the ATR problem 

and see that for a satisfactory solution of the problem one has to appropriately address 

the issues of generalization, cognition, and robustness. This is the focus of Section 6, 

in which we discuss how this can be achieved by computing with diverse attractors and 

using multisensory information. In section 7, we describe how a practical ATR system 

can be designed. A design example is given in section 8. Section 9 gives the conclusions 

and discusses the contributions of our work. In the appendix, we briefly describe the 

periodic attractor network. 



2     The importance of cognition 

In everyday usage, cognition is usually defined as the act or process of knowing, perceiv- 

ing or becomimg aware of something. In the context of our work, cognition means the 

ability of the system or algorithm to tell on its own when the viewed object is familiar or 

novel. More specifically, in the ATR context, cognition is the ability of a machine being 

able on its own, without the use of auxiliary novelty detectors, filters or other gear, to 

tell that data presented to it belongs to a familiar or novel object. In the context of 

cognitive neural networks, a familiar object is one that belongs to the training set. A 

novel object is one that does not belong to the training set. 

Cognition is important due to reasons we enumerate below. 

• It introduces a new function to neural networks to be added to the repertoire of 

functions they possess now, i.e. association, optimization, learning and generaliza- 

tion. Adding cognition enhances the power of neural information processing. 

• Imparting cognition to a neural network is important in pattern recognition when 

the network is required to operate in a complex uncontrolled environment; it en- 

hances the capabilities of autonomous systems. The ATR environment is an ex- 

ample of a complex uncontrolled environment whereas recognition of handwritten 

zip code numbers (in some postal setting) is an example of complex controlled 

environment. 

• It helps mis-identifying a novel object. Without cognition, a neural-based identifi- 

cation system operating in a complex uncontrolled environment is useless because 

a novel object can trigger the response identifying one of the familiar (learned) 

objects. 

• With cognitive ability a neural net system can be made to respond appropriately, 

for example by giving an indication to disregard the network's response in instances 

of novel objects. In certain situations, this can be used as a cue to alter the net- 

work's mode of operation by reverting to a learning modality (when unsupervised 

learning is involved) where it can proceed to learn the novel object. 

• Cognition, combined with smart sensing, segmentation, and bifurcation in dynam- 

ical neural networks that compute with diverse attractors, solves as shown below 



the longstanding problem of distortion invariant recognition of 3-D objects in the 

context of ATR and enables circumventing scaling problems related to learning 

when designing practical autonomous ATR systems. With cognition one can con- 

sider now designing )>anks of relatively small neural networks (neural modules) 

which can each be trained to recognize a subset of the set of all objects, i.e. a 

finite set of objects to the exclusion of all others. This results in neural modules of 

manageable size, each designed to recognize a small set of objects, with the entire 

assembly of modules being able to recognize a large set of objects. 

• Cognition imparts to a system a rudimentary level of awareness of its environment. 

The set of all objects that can induce a response in the cognitive system is divided 

into two sets: the targeted or crucial set which the system is specifically designed 

to recognize, and the untargetted or non-crucial set (consisting of all the other 

objects that can possibly occur in the system's environment) and to which the 

system is not intended to respond. 

• Cognition and the ensuing level of awareness resulting from it is a step in the 

direction of imparting higher-level function to neural networks. 

The philosophy of the approach followed in our method to achieve cognition is to apply 

the power of nonlinear dynamical systems to the problem while being guided by broad 

general features of biological signal processing known to us today. One such general 

feature is that feature-extraction in early stages of our sensory system with the exception 

perhaps of the olfactory system, is carried out by predominantly feedforward networks, 

while feature binding and cognition are carried out by cortical networks involving heavy 

feedback and nonlinearity which makes them essentially nonlinear dynamical information 

processors. The second general feature is the possible occurence of segmentation of data 

in the various sensory mappings formed by the early stages of our sensory system. The 

third general feature is that our brains use and fuse multisensory information to overcome 

ambiguities (and possibly also for unsupervised learning). Our method of solution entails 

evidence in support of the hypothesis we have made earlier [4], that in order to make 

a neural net cognitive it must be nonlinear, dynamical, and capable of computing with 

diverse attractors and be able to bifurcate between them depending on whether the input 

presented to the network is familiar or novel. Introducing cognition in neural networks 

increases their signal processing power and obviates the need to use novelty detection 



or novelty filters which usually entail auxiliary equipment that adds to system cost. 

Achieving cognition turns out to be intimately related to the ability to exert control 

over the phase-space trajectory and hence over the behavior of the network. We call this 

Phase-Space Engineering: the art of synthesizing prescribed trajectories in the phase- 

space of a network through control of network parameters. Achieving distortion invariant 

recognition turns out to be intimately related to data acquisition and representation 

issues. 

This inability of a network to distinguish independantly between familiar and novel 

objects may be termed as its lack of cognition and is one of the major outstanding issues 

in pattern recognition. The second major issue is how to achieve distortion invariant 

recognition which is often referred to as displacement, rotation, scale, and SNR (signal- 

to-noise ratio) independant recognition. Both issues are of crucial importance in remote 

sensing and autonomous systems that are meant to operate in a complex uncontrolled 

environment. Both issues also have consistently resisted attempts at their solution for 

a long time. The third issue basically defines the spectrum of problems to which neural 

networks can be applied with great advantage. It also affords a criterion for evaluating 

the capabilities of a given neural network model when applied to a subset of these 

problems. 

3    The ATR Concept 

The Automated Target Recognition (ATR) problem is one of longstanding interest and 

aims at recognizing radar targets irrespective of aspect or orientation and range from 

the radar, and in the presence of noise and clutter.1 Historically, there have been two 

approaches to this problem. One consists in attempting to recognize a target from its 

image. To obtain a good enough image the hardware requirement is that of synthesizing 

a large enough aperture, either physically or in time. On the analytical side one needs 

to establish an explicit relationship between scattered field on the one hand and target 

shape and characteristics as well target illumination on the other hand. Researchers 

involved with inverse problems know that this is a tough problem. It is usually simpli- 

fied by making some scalar approximation which may be essential to the formulation 

xIn the case of ATR of aerospace objects of interest here, clutter is minimal since objects are observed 

against empty sky or space and the only clutter can arise due to antenna side-lobes that see the ground. 



of an algorithm (direct and indirect). This usually means sacrifising polarization infor- 

mation. However, the main reason for pursuing non-imaging methods is the technical 

complications and economic considerations of pursuing the imaging option. 

In the second approach, the electromagnetic response of a target is processed with a 

view to extracting a set of parameters that defines a target uniquely and therefore set it 

apart from other targets. The success of this method therefore depends not only on the 

data processing method employed but also on the suitability of the signature parameters 

chosen. If a particular signature does not change sufficiently for different targets, or if the 

signature for the same target changes drastically due to some form of distortion (possibly 

noise) in the data, the demands on the processing method would be too burdensome. 

The ease or difficulty of choosing appropriate signatures in a given application is also 

fundamentally related to the complexity of the process (in our case, electromagnetic 

scattering) that generates data from which the signatures are to be extracted, a theme 

that we will expand upon in the next paragraph. Also, most of the methods proposed 

todate in the signature based strategy, have relied on the digital computer for processing 

data. Therefore the question of choosing a small number of optimum or near optimum 

parameters to identify a possibly large number of targets has been at the core of this 

problem. 

Recapitulating, the information about targets is conveyed through the complex scat- 

tering phenomenon which relates the material and geometric properties of the target 

and those of the electromagnetic waves illuminating the target to the measured vector 

fields scattered by the target. Due to the complexity of this relationship, the different 

techniques developed and applied to the problem to date are often based upon scalar ap- 

proximations and hence neglect polarization. That polarization information significantly 

improves classification and detection is borne by evidence from many problem areas, as 

documented in the NATO Report [5] and other papers (see for example [6]). However, a 

successful algorithmic approach that incorporates polarization and other information in 

a comprehensive fashion is improbable due to the complexity of the scattering process. 

The obvious advantage of applying the neural paradigm is that it takes the alternate 

route of extracting complex relationships between the target and its echoes from exam- 

ples that are made available to it. The reader is referred to [3] for a discussion of ATR 

based upon models of neural networks. 

Our approach is based on two sets of concepts. First is smart sensing which enables 



forming signature vectors of the targets so as to facilitate distortion invariant operation 

as well as to be amenable to training suitable neural networks with robust, learning and 

generalization ability. In radar the target is usually tracked so it is always located on 

or very close to the line of sight of the tracking and data acquisition radar which mea- 

sures the target signature. Thus because of tracking we need not be concerned with the 

question of location within the field of view as far as distortion invariant recognition is 

concerned. This takes care of the lateral displacement of the object. Slight displacement 

of the target from line of sight would change the aspect of the target proportionately. 

In our approach, independance of target aspect is achieved through learning and gen- 

eralization by appropriately designed neural networks. Interrogating the target with 

impulsive plane wave illumination and measuring the far field provides echoes (impulse 

responses of the target) whose shape is independant of range and this provides range 

independance. The SNR of the echoes would change with range and this should be 

handled by robustness of the neural net design. 

Second is the utilization of segmentation, bifurcation and computing with diverse at- 

tractors, and multisensory information to achieve and enhance cognition. The next 

subsection describes how target representations invariable under target displacement 

can be acquired under controlled conditions. 

Finally one needs to link that data acquisition and learning in a controlled laboratory 

environment to recognition of actual radar targets in real environment. The philosophy 

is that libraries of signature vectors are produced for scale models of actual targets of 

interest. These are used to train suitable neural networks with due attention given to the 

principle of electromagnetic similitude as applicable to perfectly conducting bodies (see 

Section 3.2). This principle states that electromagnetic scattering experiments carried 

out on scale model and the target itself would be equivalent if the frequencies would 

scaled in the same proportion. 

3.1    Target representation 

The term RADAR (Radio Detection and Ranging) has come to refer to active electro- 

magnetic remote sensing methods primarily used for detecting a class of natural or man- 

made objects that respond to electromagnetic waves by scattering them in a manner that 

depends on the characteristics of the objects as well as the interrogating waves. Targets 



may be single objects such as aero-space objects or ships or distributed objects such as 

terrain, vegetation, ocean waves, clouds or rain. Discrete objects are also characterized 

by their shape and by such intrinsic parameters as their conductivity, permeability and 

permittivity functions which determine the intimate interaction of the waves with the 

object. The story of this interaction is told by the scattered wave through changes in 

its four basic parameters : amplitude, frequency, phase and polarization. Variations of 

some or all of these basic parameters may be used to construct signatures which help in 

distinguishing different objects. One example of a signature of the target is the first N 

prominent resonances of an object illuminated by an impulse [7]. The problem is how to 

extract the resonances (or poles) from the available data, possibly corrupted by noise. 

Whereas different methods have been proposed to take into account the possiblity of 

multiple poles and prior indeterminacy of the actual number of poles that can represent 

the scattering data [8], the effect of noise on extracting resonances is very serious due to 

the nature of the scattering phenomenon as explained in [9]. 

Another example is a library of range profiles of an object collected over some solid 

aspect angle. The range profile of a target aspect is simply denned as the real part of 

the inverse Fourier Transform of the band-limited frequency response of the target at 

that aspect. The reason for choosing the real part is explained in [10]. The method 

used in generating range-profile information in an anechoic chamber environment using 

scale models of actual targets is described in some detail in [3]. One strives to produce a 

library of range-profiles for scale models for targets of interest for a wide range of aspect 

angles. The number of aspect angles depends on the angular sampling criterion and 

the solid angle of encounter of the target (the solid angle formed by all possible aspects 

of the target that can be encountered in a realistic situation). Such libraries of range 

profiles furnish the data used to train a neural network to recognize the target from a 

single "look" or signature. 

A range profile does not contain the depolarization information about the target. 

Because of the complexity of the scattering phenomenon, it is not an easy task to 

"extract" comprehensive signatures that would uniquely belong to an object. Since two 

independant parameters uniquely represent the polarization state of a wave [11], one can 

for example choose the inclination angle of the polarization ellipse, ip, and the ellipticity 

angle, x, which can be easily calculated from measured co- and cross-polarized responses. 

If the measured co-polarized field at a given frequency is Ecoe
,6co and the measured cross- 



polarized field at the same frequency is Ecxe'6ci, where 8co and 8CX are the phase angles 

of the co-polarized and the cross-polarized fields, respectively, refered to some fixed 

reference, then the two polarization angles are calculated as follows 

2E  E 
tan2ip =        co_  ™ cosS (1) 

CO ex 

and 

sin2x = WTWsin8 W 
CO    '   -^cx 

where 6 = 8C0 - Scx. The above two parameters, V and x, together with the complex 

amplitude of the scattered wave, all plotted against the frequency parameter contain 

complete information about the scattering object for a given aspect. Note that the 

amplitude information is already present in the range profile and hence addending the 

frequency variation of both tp and x to it would produce a complete signature of a given 

aspect of the target. 

How such signatures are used to recognize targets and the importance of compre- 

hensive signatures, which include polarization information, in enhancing the cognitive 

ability of a neural processing system is illustrated Section 6. 

3.2     The Principle of Electromagnetic Similitude 

It is usually not easy to acquire range profile data of desired aspects of an actual airborne 

target over some solid angle of encounter. It is much easier to obtain range profiles at 

different desired aspects of scale models of the real targets in an anechoic chamber 

environment. The question is whether an equivalence can be established between the 

range profiles of actual targets as opposed to scale models of these targets. This involves 

consideration of such factors as dimension and frequency scaling, and electromagnetic 

parameters of the object and the medium and constitutes what is called the problem 

of electromagnetic similitude [12]. Here we are paying the price of the convenience of 

having complete control over the range of aspects over which data can be acquired. 

Assume that the permittivity and permeability of the material of actual and scale 

targets (whose dimensions are in the ratio n : 1) are the same. Then it can be shown 

[12] that the conductivity and measurement frequencies of the smaller model be n times 

that of the larger. The first requirement is very difficult to meet since the conductivities 
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of metals used for real targets and scale models fall within a rather limited range. 

However, since the conductivities of metals are very high, increasing the conductivity 

further would hardly effect the fields in the smaller scale model, and in practice one is 

able to establish similitude by simply using correspondingly higher frequencies for the 

smaller scale models. Assume that a radar system is designed to operate in the range 

of frequencies /i to fc looking at a target of size L. Then to produce data that obeys 

similitude (with respect to the actual radar data) we need to use a frequency range of 

nfi to n/2 in an anechoic chamber environment when using a scale model of size L/n. 

4    Learning 

Biological neural networks can learn to identify concepts, patterns or objects from ex- 

amples and appropriately generalize from what they learn. By generalization we mean 

that learning is not rote. A child learns the concept of dog from few examples (encoun- 

ters) and from there on recognizes all varieties of dogs when encountered. Moreover, 

biological networks are also known to perform amazingly well on information that is 

incomplete, noisy or distorted in different ways, what we .call sketchy information. It is 

also recognized that these networks are especially adept at solving problems of a different 

nature than those which yield to parametrization and programmed numerical solutions 

on digital computer. These problems are usually based upon "natural" data, and some- 

times termed random problems [13] because of their lack of structure (actually, quite 

complex or rich structure). Hence they defy an effective concise definition which could 

be transformed into an algorithm fit for a digital computer.The term "natural" refers to 

information that stimulates our senses and that of other species and emanates from the 

respective surroundings. As a clarification, one should note that not all difficult prob- 

lems (from the computing perspective) are natural for neural networks. For example 

the problem of decryption (decoding an encrypted message) is hard but generally not 

natural in the biological learning sense. Another important attribute of many biological 

organisms is their ability to distinguish between what is familiar and what is novel. In 

other words, when confronted with a new object or concept, there is awareness about its 

novelty. This ability is infact crucial to continued learning in human beings and other 

species. It is also observed that different organisms can perform specific tasks relevant to 

the needs of the organism. Thus a given neural network is not expected to perform like 
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a general purpose machine. The tasks that a system is expected to perform determine or 

are determined by the size and architecture of the network. It is difficult to say much in 

detail about the intricacies of biological computation, but there is substantial evidence 

of computing with different types of attractors in biological networks, suggesting that 

they behave like nonlinear dynamical systems, [14] and [15]. 

The need to propose and study models of how learning occurs is twofold. One is to 

be able to understand and explain the learning phenomenon in humans and animals. 

Second, which is most important from the engineering point of view, is to build systems 

that can learn. Most learning models proposed to date focus on mimicking some of 

the properties of biological learning and may be adequate for certain applications. For 

example, most models of associative memory or learning focus only on recognizing a 

limited number of possibly complex patterns from incomplete and/or distorted inputs. 

The environment is assumed to be secure or controlled in the sense that these are the 

only possible patterns that will appear. In statistical pattern recognition and inductive 

inference the aim is to infer a rule, e.g. some probability distribution, that could explain 

some given data well, [16] and [17]. In this paradigm, one requires (in the limit) that 

the hypothesis become equal to the actual underlying target concept that generated the 

data. Informally, a target concept can be an actual object or process from which the data 

originated in the first place, for example letters of English alphabet. The data is then 

different examples of these letters written by possibly different people. All the different 

examples form what is known as the concept space. Learning is then seen as a process 

that uses examples of the target concept to produce a hypothesis, an approximation of 

the concept. For example, a neural network (which is the physical implementation of 

the hypothesis), suitably trained on examples of alphabet, can classify new examples of 

the same alphabet by correctly outputting symbols for different letters. 

Relatively recently (1984), Valiant [18] has proposed a more general framework to 

construct a mathematical model of the learning process. The model is variously known 

as the distribution-free model or the model of probably approximately correct learning. 

In this model, a learning algorithm attempts to learn a concept (or target) belonging to 

some known class of concepts (or targets). The algorithm is assumed to have access to 

the concept only through positive and negative examples of the concept. For example, 

all handwritten versions of the number "5" are positive examples of the concept "five". 

All handwritten versions of numbers (0-9) other than "5" are negative examples of the 
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concept "five". The examples are thought to be generated randomly according to some 

unknown probability distribution, which may be arbitrary but fixed. Three realistic 

requirements are placed on the performance of the learning algorithm [19]. First, it is 

required to identify the unknown concept only approximately (probably approximately 

correct). The more accurate the approximation, the better it is. Second, it should learn 

in reasonable time, i.e. the learning algorithm should be computationally efficient, in the 

standard polynomial time sense. By polynomial time we mean that the time required 

to process the data is at most a polynomial function of the amount of input data [20]. 

Third, the learning algorithm should be general enough to perform well against any 

probability distribution on the examples2 (distribution-free learning). Regarding the 

last point, it should be pointed out that not all biological systems are geared to perform 

equally well on all different problems. Hence the ability to process different types of 

data (in other words, data with different underlying probability distributions) should 

generally be linked to the types of tasks that a system is expected to achieve. The term 

probability distribution on examples in the context of object recognition can be seen 

as assigning values of the probability measure pi to different objects that belong to the 

sample space of all possible objects occuring in a particular application. For example, in 

zip code recognition in the U.S. only arabic numerals can occur with some probability, 

but the probability of occurence of Chinese characters is negligible. 

Some comments are in order at this stage. First, that computational learning theories 

only guarantee existence of learning automata that are capable of doing certain tasks 

but are still lacking to a large extent on proposing constructive and adaptive procedures 

to achieve these goals. Second is the assumption that a certain number of examples 

(positive and negative) are available to the learning algorithm so that it can learn a 

certain concept rather well. It is shown by Kearns [19] for example, that certain concepts 

or representation classes can be learnt by negative-only or by positive-only examples. 

However certain concepts, for example, polynomially learnable representation classes 

like fcCNF V fcDNF (i.e.   the disjunction of the k conjunctive normal form and the k 

2 A probability space is a set X (of objects or elements), together with a family A of subsets of X 

and a function p, the probability distribution or probabilty measure, from A to the unit interval [0,1]. 

An element A of A is known as an event, and the value n(A) is known as the probability of A [21]. As 

a simple example, X can contain all 26 letters of the English alphabet, and all possible combinations 

of letters constitute the family of sets A. To each element A of A we assign a number fi(A), which is 

the probability of its occurence in a normal english text. See [21]. 
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disjunctive normal form) and &CNF A &DNF (i.e. the conjunction of the k conjunctive 

normal form with the k disjunctive normal form), require both positive and negative 

examples for polynomial learnability3 [19]. This problem is also related to the arbitrary 

but fixed probability distribution condition which sounds very strong indeed. However, 

the catch is that the same probability distribution that generated the examples used in 

training is the one that is used to test the system. This may be a reasonable assumption 

in applications where the system is not exposed to novel stimuli which disturb the 

probability distribution substantially. An example is the post office environment where 

a machine is required to sort mail by Zip code, where the number of possible characters 

is restricted and their frequencies of occurence are within certain limits. We will discuss 

this problem in greater detail soon. 

Third, is the problem of using a priori knowledge about the problem. In many 

practical situations we do have some knowledge of the target function /, for example 

the shape of a certain object. In these cases it would be inefficient to take random 

examples without taking advantage of what is known about /, for example the object 

is symmetrical about a certain axis. Hence if one could use such hints in learning 

from examples, it may considerably help in reducing the hypothesis space from which 

functions may be chosen to approximate the unknown concept, or reduce the number 

of steps or examples needed to learn the concept [22]. For example, the range profiles 

or signature vectors used to represent radar targets in this work vary gradually, at a 

rate depending on the complexity of the target, as the aspect of the target is changed. 

Hence, one can use this information in selecting range profiles to train a system to 

recognize radar targets from their range profiles. In the absence of this information, one 

would choose the angular resolution criterion to calculate the number of range profiles 

needed to characterize a radar target over a given angular window. The number of 

range profiles required in this case can be very large depending on the bandwidth of 

illuminating radiation. A priori knowledge of the "angular correlation" of range profiles 

The conjunctive normal form or CNF is a conjuction of monomials. A monomial is itself a conjunc- 

tion of literals. A literal indicates a variable (feature) or its negation. Similarly, the disjunctive normal 

form or DNF is a disjunction of monomials. Literals define the simplest (atomic) concepts. Monomials 

are conjunctions of literals and therefore define concepts which are more complex. The DNF and CNF 

define even more complex sets. If we want to describe concepts of even greater complexity, we can form 

conjunctions (or disjunctions) of DNFs (or CNFs). The kCNF and kDNF are obtained by restricting 
the number of literals in each monomial that makes up these functions to k. 
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helps determine how range profiles could be selected to achieve good generalization. 

4.1     Complexity Theory and Efficient Learning:   Brief Back- 
ground 

The difficulty with which different concepts can be learned from examples forms the 

subject of complexity of learning. Complexity theory deals with the relationship between 

the number of examples needed by the algorithm or machine to learn a concept to be 

able to perform valid generalization and the time required by the algorithm to learn that 

concept. The issue is whether the algorithm can achieve its goal "efficiently", i.e. in 

reasonable time (in polynomial time sense). 

The problem can be formalized in the following way.   We have closely followed the 

treatment in [21]. Suppose H is a hypothesis space defined on the example space X, from 

which a set xofiV examples of a target concept is available.  To make the discussion 

complete we will interweave with a simple example.   The concept can be a black and 

white picture which partitions the two dimensional space into black (or positive) and 

white (or negative) regions. JV examples of this concept (picture) consist of coordinates 

of JV points in the picture plane. The JV examples could be JV shots of the same scene 

taken at different times of the day. The example space can be seen as a manifestation of 

the target concept / which is to be approximated by some h € H from JV examples in X. 

For example, h may be the partition achieved by a certain feedforward network of the 

type we discuss below. H is then the class of all feedforward networks which implement 

different partitions. If H is restricted to all straight lines (or networks implementing 1-D 

hyperplanes), the types of partitions and therefore the concepts that can be learned are 

restricted to those that are linearly separable. H can classify the JV examples (as positive 

or negative, i.e., binary classification) in at most 2" ways, x is said to be shattered by 

H if this maximum possible value is attained by H. For example, the hypothesis space 

consisting of straight lines (1-D hyperplanes) can shatter three non-collinear points in 

a plane, i.e. the three points can be partitioned in all eight possible ways. If the set x 

contains examples which are not all distinct (therefore, not separable by any surface), 

then it cannot be shattered by any H. More formally, when the examples are distinct, x 

is shattered by H iff for any subset S of the examples, there is a hypothesis h in H such 

15 



that for 1 < i < N, 

h(xi) = l<=^XieS (3) 

5 is then the set of positive examples of x, the remaining being negative examples. 

Let us assume that a possibly unknown function h(f) € H approximates the concept 

/ well on all examples in X, i.e. h(f) is the best possible approximation to /. Since 

h(f) is not known, we can consider a function hx(f) as an approximation for h(f) and 

therefore for /, and expect it approach h(f) as N becomes very large. However the 

function /ijv(/) may be biased by the TV examples used to obtain it. We want to know 

how bad is the estimate in the worst case. The key result is a bound given by Vapnik 

and Chervonenkis [23] 

Pr(maxf\hN(f) - h(f)\ > e) < 45(2iV)e-
£2;v/8 (4) 

Unless the function g(N) grows exponentially, the right side will approach zero as N 

increases.4 The growth function g(N) is the maximum number of different binary func- 

tions on the set of examples xx,... ,x^. It is either identically equal to 2N for all N 

(VC-D is infinite since it keeps increasing with N) or else is bounded above by Nd + 1 

for a constant" <f (VC-D = d is finite). The VC-D (VC dimension) of a hypothesis may 

be defined as the maximum number of samples Nmax that are shattered by H. Finite 

VC-D implies a polynomial g(N) and guarantees generalization. In this case, as the 

number of examples increases beyond VC-D, the concept is better learnt (number of 

valid hypothesis from H decreases) and generalization improves. It would be helpful to 

give an example at this point. We want to find the VC dimension of the hypothesis 

space H consisting of all 1-D hyperplanes that may be used to partition a plane. As 

already stated in the foregoing paragraph, H shatters any three non-collinear points in 

a plane, i.e. it can partition them in any of the eight possible ways. Hence, H has 

a VC dimension of at least three. It can be easily shown that any four points lying 

in a plane are not shattered by H. Therefore VC-D(H) = 3. It has been shown by 

Baum and Haussler [24] that the VC-D of a feedforward network with one hidden layer 

is proportional to the number of its nodes and adaptable weights 
42N is used in the argument of g{.) because in deriving the equation (2), two samples of length N 

each are used. This is needed to see whether the maximum difference between the relative frequencies 

of a certain event in these two samples uniformly converges to some value as the number of examples 

N in each sample is increased. 
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Within Valiant's framework, one wants to learn from examples of a Boolean function 

/ € F. The choice of the hypothesis (or representation) class H is crucial in the 

learnability of F [25]. A class H of representations is denned as a p-time representation 

if for all x and for all h G H, h(x) may be computed in time polynomial in n (dimension 

of the feature vector x) and the size of h. Baum proves that: 

For any class of concepts F and any p-time representation H, if F is learnable 

by H, then F is learnable by feedforward neural nets. 

However, there are functions that are not learnable by neural networks. For example, 

Goldreich et al. [26] have constructed classes of poly-random functions not learnable by 

any representation (or hypothesis) and hence, in particular, not learnable by feedforward 

nets. Goldreich calls a function poly-random if any polynomial-time algorithm, given 

values of the function at arguments of its choice, cannot distinguish a computation 

during which it receives the true values of the function from a computation during 

which it receives the outcome of independant coin flips. Also Kearns and Valiant (1988) 

have shown under cryptographic hypothesis that the class of feedforward nets, even when 

restricted to be logarithmically deep (i.e. if the size of the input is n, then the number 

of layers is of the order of logn), with each node connected to a constant number of 

others, are still not learnable by any p-time representation. It is evident that human 

learning in natural world as well as a lot of practical problems are not concerned with 

solving the general decryption problem. The number of concepts that are learnable 

from examples (n-dimensional) in polynomial time are an exponentially small subset of 

possible concepts. According to this assumption, since people are capable of learning in 

the real world, there must exist a small set of concepts that are both rapidly learnable 

and adequate for accurately describing the world. 

Independantly, Hornik et al. [27] have shown that standard multilayer feedforward 

networks with as few as one hidden layer using arbitrary squashing functions are capable 

of approximating any Borel measurable function5 from one finite dimensional space to 

5Let Sx and Sy be a system of subsets of any two sets X and Y, respectively. Then an abstract 

function f(x) defined on X and taking values in Y is said to be (Sx,Sy)-measureable if A £ Sy implies 

f~1(A) 6 Sx- If Sx and Sy are chosen to be system of all Borel sets, the the function defined above is 

called a Borel-measureable function. Put simply, B is a Borel set if B can be obtained by a countable 

number of operations on some given sets, starting from open sets and each operation consisting of taking 
unions, intersections, or complements. 
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another to any desired degree of accuracy, provided sufficiently many hidden units are 

available. This result thus establishes the class of concepts that can be learned by 

multilayered feedforward networks. 

4.2    Learning and Working in Different Environments 

In many applications, a machine is required to work in the same environment in which it 

was trained in. A robot working in an auto factory, a handwritten Zip Code recognition 

machine in the post office, and most classification tasks are examples of tasks confined 

in secure or controlled environments. 

However, in other important applications, a machine is required to work in environ- 

ments other than that it was trained in. This may be desireable when one is interested 

in identifying a small number of objects among a very large number of possible objects, 

or when training in the actual environment is practically not possible, as is the case with 

radar target identification. Another important consideration is that of the capacity of 

finite sized networks to learn. 

The original PAC learning framework, as proposed by Valiant in 1984, assumes that 

the training and working environments are identical. In a modified PAC framework, 

Shvaytser [28] considers cases when the two environments can be different. For binary 

classification of examples, one can characterize an environment e by the probability dis- 

tribution functions D+ and D~ of the positive and negative examples6. The training 

environment is denoted by e = 0. e = t where i = 1,2,..., E represents other environ- 

ments that could be encountered by the machine trained in environment e = 0. There 

are three possible cases that can occur in practice (Shvaytser [28]) 

1. The environment is unchanged during training and working (testing), i.e. e = 0 

all along. A simple example of this is when a network trained to classify only two 

different objects or patterns is expected to encounter these two objects, to the 

exclusion of all other objects. Hence it operates in a controlled environment. 

2. The working environment e = i is completely unknown during the training, which 

is done in environment e = 0. In this case a common strategy is to take D% and 

6Examples are instances of some concept(s), e.g. a tree. £>+ could be the probability distribution 
function of instances of trees in the environment, and D~ the pdf of instances of other objects that are 
not trees 
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D0 as uniform distributions. 

3. D* is known and is used for DQ, but D^ is unknown. An example of this can be 

when a network is trained to recognize a letter "A" in different environments. The 

negative examples can all be other alphabets and/or some other random patterns, 

Chinese letters, etc. The two subcases that arise in this instant are: (a) negative 

examples are not used at all during training, and (b) DQ is assumed to be a uniform 

distribution over the negative examples. 

In Valiant's framework, it is shown that in case (1), a polynomial number of examples 

is always sufficient for reliable training [29]. Also in this framework, it can be shown that 

reliable training is impossible in case 2. Shvaytser shows that it is impossible to reliably 

train feedforward networks to handle both subcases 3(a) and 3(b). We will illustrate 

this in the next section using radar target identification as an example. Specifically we 

will show why it is not possible to achieve sufficient cognition by only using feedforward 

networks. Also we propose and describe a novel composite network that has the ability 

to solve this problem. 

In this and other similar applications, the reasons for using this approach can be enu- 

merated thus: Given a set of all possible objects that can occur within the environment 

of a neural network or a cognitive system, one cannot practically think about learning all 

possible objects from their different manifestations. There are some important reasons 

for this. First, the amount of information available to the network to learn may be so 

great that the size of the network required to learn the environment in detail becomes 

horrendous and learning in reasonable time becomes improbable. Second, the objects of 

interest that are to be classified may be relatively small, and it would be inefficient to 

learn in detail, information about all other objects (i.e. negative instances) that is not 

directly useful. Third, information about all possible objects or concepts possible within 

the environment is rarely available in practical situations. Hence, although positive ex- 

amples of the target concept are available, negative examples are either too numerous 

or expensive to come by. Also a reasonable number of negative examples brings us to 

the first point: namely the size of the network and the time required to learn (i.e. train 

it). Fourth, the network could be trained in a controlled environment and then required 

to operate in a different environment. This may be seen as changing the probability 

ditribution of the sample space of the examples used to test the network as compared 
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to the probability distribution of the sample space used for training. 

One can think of building a network that learns only a subset of the set of all possible 

objects to the exclusion of all the other objects in the set, i.e. to build a network that 

can distinguish between familiar objects belonging to its learning set and novel objects 

belonging to the set of all objects the net has not or could not be taught. We call this 

capability cognition. The inability of a network to distinguish independantly, i.e. on 

its own, between familiar and novel objects or its lack of cognition is one of the major 

outstanding issues in pattern recognition that is not widely appreciated. The second 

major issue is how to achieve distortion invariant recognition which is often referred to as 

displacement, rotation, scale, and SNR (signal-to-noise ratio) independant recognition. 

Both issues assume crucial importance in remote sensing and in autonomous systems 

that are meant to operate in a complex uncontrolled environment, and have consistently 

resisted attempts at their solution for a long time. The radar recognition problem, which 

presents itself as a marvellous example in illustrating these issues is used in the next two 

sections to highlight these issues. 

5     Learning to solve the ATR problem 

In section 3 we argued why applying the neural paradigm to the problem of ATR held 

promise because one can learn complex relationships through examples when it is difficult 

or impossible to arrive at them analytically (and therefore algorithmically). However, 

one has to consider issues of a rather different nature that emerge as a result of taking 

this route. For example in ATR problem, it is not practically possible to teach the 

system with all possible targets that can happen in its environment, both because of 

the limited capacity of the system and difficulty in acquiring data about all possible 

targets. Even the number of targets required to be classified may be large enough to be 

efficiently learned by a single network. This confronts us with the question of whether 

imparting cognition to the network can resolve these issues. In addition, targets of inter- 

est (e.g. certain class of airplanes) produce generally quite similar signatures, specially 

from certain aspects. Hence the recognition task requires making fine distinctions be- 

tween similar echoes. These concerns are enhanced by the presence of noise and the 

signal level, which may vary depending on the distance of the target from the radar. 

Finally, there is the practical need to learn and identify targets in reasonable time so 
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that information does not lose its value. 

A neural network designed to solve the radar problem must therefore fulfill certain 

requirements. First, it should exhibit good generalization by performing well on new 

examples of the known targets and at the same time be able to discriminate against 

examples belonging to novel targets, i.e. have cognitive ability. The nature of the 

application also requires robust operation in the face of external and internal noise and 

imperfections. Also, the network should be able to perform its task in real time. 

It is logical to start by examining existing neural net techniques to see how they 

relate to these characteristics. For example forming simple heteroassociations of target 

echoes with target labels (see for example, [30] and [3]) does not provide an answer to 

the problem of cognition. Not only are different target labels evoked by some echoes 

belonging to other targets but also by spurious inputs. As another different example, 

Ans's self-organizing network [31] requires long training times and also lacks cognition, 

i.e. it is unable to distinguish between familiar and unfamiliar targets. As a more inter- 

esting example of this difficulty in keeping these crucial properties together we discuss 

our experience with a high threshold version of the feedforward network, a possible can- 

didate for providing cognition. This network is a simple feedforward network trained by 

error back-propagation in which the internal threshold of neurons is used to control the 

response region of neurons. 

In this high threshold network we found that the generalization and cognitive per- 

formance of a feedforward network can be tuned by varying the internal thresholds of 

neurons. As a simple example, the network can be taught to associate selected range 

profiles of two targets with labels assigned to the two targets. To test the generalization 

of the network one tests it with novel range profiles of the familiar targets. To test its 

cognition, one can test it on range profiles from some novel targets as well as spurious 

inputs or signals. We found that as the threshold rises, the ability of the network to 

distinguish between familiar and novel targets increases at the expense of its general- 

ization ability. For low to moderate values of thresholds, the generalization ability is 

quite good. However, when the threshold is quite high, the network becomes only a 

memorizer of training examples and can be seen as an example of rote learning. Also, 

with increasing levels of noise, the network rapidly loses its generalization performance 

and is no longer able to recognize the known targets most of the time. Generalization 

is important because as it will be seen later it is the mechanism with which recognition 
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of the object or target from single echos independant of their aspect (aspect or rotation 

invariant recognition) is achieved. 

Some results on the high threshold networks will be helpful to explain its performance 

better. The architecture of the feedforward network is as follows. The number of neurons 

at the input is fixed by the number of data points in the range profile at 128. The number 

of neurons in the hidden layer is chosen to be 24, which seems to be a good choice for 

this data set. The number of ouput neurons is chosen to be 32. The network is trained 

on 25 percent of the available range profiles from the B52 and the Space Shuttle. During 

testing all the range profiles from the three test objects, the B52, B747 and the Space 

Shuttle are used. When a zero threshold is used in training and testing, the network 

classifies the known objects correctly in all cases, but misclassifies the B747 as either 

a B52 or a Space Shuttle from 97 percent of the views. When the threshold (during 

training and testing) is raised to 0, = 1 the misclassification rate on the novel target, i.e. 

the B747, goes down from 97 percent to 78 percent. The remaining 22 percent of the 

range profiles from the B747 result in sparse activity at the output of the network, which 

can be taken as an indication of discrimination against novel targets by the network. 

The performance on known targets is almost unaffected. The behaviour of the network 

as a function of progressively increasing the neural threshold is shown in Table 1 and 

Figure 1. Beyond a certain value, raising the threshold further only marginally decreases 

misclassification of unknown targets at the expense of deterioration of performance on 

known targets. 

Also the network is trained rather rapidly by increasing the threshold rather gradually. 

Training the network at higher thresholds directly either requires longer times or the 

network does not converge. Therefore we trained the higher threshold networks in stages 

to facilitate rapid learning. For example, if a network is to be trained to operate with 

a neural threshold of 0, = 3.0, it is trained with a neural threshold of 0, = 1 until the 

mean-squared error between the actual and the desired outputs has dropped below a 

given value. In the next stage, the threshold is raised to 0,- = 2.0, for example, and the 

training is continued until the error between the actual and desired outputs has again 

dropped below the given value. Finally the threshold is raised to 0,- = 3.0 and training 

is continued until the error between actual and desired outputs again drops below the 

given value. 

Using different sets of targets to train the network influences the performance of the 
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Figure 1: The effect of using different neural thresholds on the performance of feedfor- 

ward networks. The network is trained on 25 percent data from the B52 and Space 

Shuttle scale models and tested on all data from these two models as well as a novel 

target (B747). 

Error (E) or Undecided (U) 

Oi B52 S.Sh. B747 

0 0 1(U) 91(E) 

1.0 0 1(U) 78 (E) 

2.0 0(U) 2(U) 19(E) 

3.0 0(U) 2(U) 4(E) 

4.0 2(U) 5(U) 2(E) 

4.5 3(U) 7(U) 1(E) 

Table 1: The effect of using different neural thresholds on the performance of feedforward 

networks. The network is trained on 25 percent data from the B52 and Space Shuttle 

scale models and tested on all data from these two models as well as a novel target 

(B747). 
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Error (E) or Undecided (U) 

9i B747 S.Sh. B52 

0 0 0 98 (E) 

1.0 0 0 94(E) 

2.0 0 0 63 (E) 

3.0 0 0 40(E) 

4.0 0 0 17(E) 

5.0 0 0 12(E) 

6.0 0 1(U) 12(E) 

Table 2: The effect of using different training targets on the performance of feedforward 

networks using various internal neural thresholds. This network is trained on 25 percent 

data from the B747 and Space Shuttle scale models and tested on all data from these 

two models as well as a novel target (B52). 

high threshold network rather strongly. For example when we used the B747 and the 

Space Shuttle as the known targets and the B52 as the unknown target, with the network 

parameters same as those for the net described in detail above, the misclassification rate 

for the unknown target (the B52, in this case) was as high as 40 percent at 0, = 3.0, 

down from 98 percent at 0,- = 0. The cognitive performance of the network in this case 

as a function of the internal neuron threshold is tabulated in Table 2 and plotted in 

Figure  2 for this case. 

When the B52 and the B747 are used as known targets and the Space Shuttle as the 

unknown target, the misclassification rate on the Space Shuttle drops from 63 percent 

at 6i = 0 to only 3 percent at 0,- = 3. This behaviour is tabulated in Table 3 and plotted 

in Figure  3. 

The asymmetrical behaviour of the network vis-a-vis the training set is not the only 

problem with high threshold networks. Other critical properties such as the dynamic 

range and robustness against noise are far from satisfactory. Since the nets trained and 

operated at high neuron thresholds form tighter phase spaces only a small amount of 

Gaussian noise is tolerated before the network fails to recognize a given target either 

by classifying it as one of the other targets or by sparse activity at the output layer of 

the feedforward network as a signal of its inability to make a decision. Even a signal to 

noise ratio of lOdB is usually sufficient to cause such a failure. Note that the signal to 
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Figure 2: The effect of using different training targets on the performance of feedforward 

networks using various internal neural thresholds. This network is trained on 25 percent 

data from the B747 and Space Shuttle scale models and tested on all data from these 

two models as well as a novel target (B52). 

Error (E) or Undecided (U) 

vtrain—vtest B52 B747 Space Shuttle 

0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 

4(U) 

4(U) 

2(U) 

1(U) 

2(U) 

0 

0 

0 

0 

0 

1(U) 

1(U) 

1(U) 

63 (E) 

40 (E) 

10 (E) 

3(E) 

2(E) 

1(E) 

1(E) 

Table 3: The effect of using different training targets on the performance of feedforward 

networks using various internal neural thresholds. This network is trained on 25 percent 

data from the B52 and B747 scale models and tested on all data from these two models 

as well as a novel target (Space Shuttle). 
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Figure 3: The effect of using different training targets on the performance of feedforward 

networks using various internal neural thresholds. This network is trained on 25 percent 

data from the B52 and B747 scale models and tested on all data from these two models 

as well as a novel target.(Space Shuttle). 
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noise ratio of the original range profiles collected in the experimental facility is about 15 

to 20 dB. Also the dynamic range decreases as the threshold is raised. Hence raising the 

threshold makes the network more and more inflexible to changes in the signal level. 

A deep look at how the network operates tells us why it cannot be trained reliably 

with only positive examples (i.e. examples of the objects to be recognized), when it 

is expected to perform in a different environment. The knowledge of the network is 

only based upon the patterns from the targets used to train it. When some pattern is 

presented to the input of a network, a neuron in the following layer sees a weighted sum 

of the pattern inputs (depending on the relevant inter-layer weights). The threshold 

6 of the neurons serves as a gauge [32]. When the weighted sum is greater than 0, 

the particular neuron identifies the pattern as similar to some examplar pattern which 

produces the greatest value of the weighted sum. For some high value of threshold 

6 = OJJ, only one pattern will be classified as familiar. This corresponds to rote learning. 

For some lower value 9 = 0i, all possible patterns will be classified as familiar. In 

between, some patterns will be classified as familiar and some as non-familiar. The 

response region of the neuron can be seen as the mechanism that provides approapriate 

generalization and cognition in feedforward networks. The problem is how to choose an 

appropariate value of 6 using only positive examples in the radar target recognition case. 

One can choose a reasonable threshold by observing performance on unknown targets, 

but this violates our condition that information about other than training targets is not 

available. This problem is not solvable using high threshold feedforward networks in 

the radar case, because some unknown targets have some echoes which are more similar 

to some of the known target's echoes than other echoes of that known target. Also, 

making the response region tight has the effect of making the network fragile to noise. 

The question is whether one can come up with a different scheme that would introduce 

cognition but not at the expense of sacrificing other desireable characteristics such as 

generalization and robustness. 

6    Blueprint for Cognition 

As we now explain, the nonlinear dynamical systems approach to computing offers an 

interesting opening into the problem. The biological plausibilty of such an approach 

is evidenced by the fact the higher level cortical circuits are nonlinear and exhibit rich 
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feedback [33]. The behavior of such circuits can be macroscopically described in terms of 

the types of attractors they can exhibit, namely, point, periodic and chaotic attractors. 

There is evidence that a plausible mechanism for achieving cognition lies in the ability 

to bifurcate between different attractors depending on the input to the network. For 

example bifurcation between periodic and chaotic attractors in the rabbit olfactory bulb 

provides a mechanism for differentiation between familiar and novel odors as shown by 

Skarda and Freeman [14] and Baird [15]. How this is actually done is still difficult to 

comprehend, partly because of our limited understanding of chaos and chaotic attractors. 

Because it is easier to consider bifurcation between point and periodic attractors, we will 

explore the cognitive potential that can be tapped by bifurcating between these two types 

of attractors. 

Here is where periodic attractor networks enter the picture, as agents for providing 

cognition. The periodic attractor network (PAN) is briefly described in the appendix. 

Here we summarize some of the important features of a PAN. 

• The PAN is a fully connected feedback network in which highly correlated vectors 

can be stored in one or more non-intersecting open or closed trajectories in the 

phase space of the network. 

• A relatively large number of vectors (of the order of N) can be stored on prescribed 

trajectories. 

• These trajectories can be formed with a high degree of isolation in the sense that 

if the network is initiated by a stored vector or one close to it in the Hamming 

sense it triggers the periodic attractor, otherwise it goes to a point attractor. This 

is the mechanism for providing cognition. 

• We have found that robustness of these networks to imperfections in weights is 

reasonable, in that they can withstand 6-10 percent weight imperfections with- 

out appreciable loss in isolation properties. This is an important when hardware 

implementations of nets are considered. 

• The PAN are however intolerant to element failure but in practical nets this can 

be remedied by neuron redundancy. 

• The PAN requires synchronous update and the implications of this are also dis- 

cussed in the section on conclusions and discussion. 
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6.1     Integrating Diverse Attractors. 

The problem is how one can combine the desireable properties of the feedforward net- 

works with those of the PANs. At this moment it seems fruitful to see what hints 

neurobiology can provide about a possible mechanism for cognition in the brain. The 

current view (which we present in very simplified terms) can be condensed in the fol- 

lowing way. The different modalities of information that impress on our various sensors 

end up as separate cortical maps on our cortex. As an example, the different sections 

in the somatosensory cortex can be related to associated areas on the body surface. 

These cortical maps are presumably integrated by intercortical circuits which connect 

different areas. Unfortunately this mechanism seems to be quite complex and it is not 

known exactly how the integration takes place. One can thus hypothesize a preliminary 

blueprint for cognition. Feedforward networks process segments of information and map 

them onto the cortical surface, and other networks which use feedback somehow bind 

these cortical features together to provide a mechanism for cognition. 

How the integration (binding) takes place is quite difficult to answer. For example, 

Eckhorn et al. [34] based upon their discovery of feature linking of cell assemblies in cat 

primary visual cortex by mutual synchronization, suggest a neural model to explain this 

phenomenon. Their model net consists of two layers of neurons coupled by feedforward 

connections as well as lateral and feedback connections. The idea is that temporal 

correlations may be the means of achieving binding. 

With this we may venture to propose this simple (engineering) model for achieving 

distortion-invariant recognition of radar targets. The idea is to process target signatures 

in segments with feature forming modules and then bind the features formed by these 

segments depending on the compatibility (consistency) of the features. The sub-spatial 

features may be formed by feedforward trainable networks which process segments of 

radar signatures. The composite features or labels formed are then processed by a 

periodic attractor network which either binds these features by a periodic attractor or, 

if they are not compatible, bifurcates to a point attractor. Note that in this case, the 

thresholds of the feature-forming networks are taken to be zero, and hence the problem 

of determining thresholds appropriate for generalization does not occur. This is replaced 

by the easier problem of choosing the threshold in the feedback PAN in order to ensure 

sufficient isolation of the periodic trajectories from the rest of the network phase space. 

In such composite networks, the feedforward feature forming modules lack cognition but 
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furnish robust learning and generalization, while the PAN which lacks generalization 

furnishes the mechanism for cognition through its bifurcating ability. 

6.2    Performance of Simple Composite Networks 

As a simple test of the performance of such an architecture we use range profile segments 

as inputs to a composite network. The case of one segment corresponds to using one 

multi-layered feed-forward network, and therefore one does not have the mechanism 

of comparing different sub-spatial features of the echo for compatibility. With two 

segments comparison of different spatial features becomes possible through the PAN. 

The key point is that as the number of segments increases, the chance that an unknown 

target responds on all segments in exactly the same fashion as one of the known targets 

decreases rapidly and the PAN makes use of this to provide cognition. 

Some results will help to make the discussion clear. The architecture of the composite 

network is scematically shown in Figure 4. To test the potential of such a scheme, we 

used simple perceptron networks at the front end to process segments of data. The 

target data used to evaluate our cognitive network is the same as that used to evaluate 

the high threshold networks described in the previous section. 

We first used the B52 and the B747 as the training targets and the Space Shuttle as 

the novel target. When whole range profiles were used in training one fully connected 

network, the known targets are recognized with almost hundred percent certainty. How- 

ever the performance on the unknown target (Space Shuttle) was undesireable since 80 

percent of the time it was classified erroneously as one of the known targets and only 

20 percent of the time did the net indicate its ignorance by going to a ground state 

(i.e. all neurons in the output layer are in the low state represented by 0). We then 

divided each range profile into two equal segments and each segment was used with two 

separate feedforward networks as shown in Figure 5. During testing, if both segments 

give the correct answer the target is recognized unambiguously since one of the periodic 

attractors is triggered. Otherwise, the network indicates its reservation about making a 

decision by going to a point atrractor. With two feedforward nets at the front end, the 

known targets were again recognized almost perfectly. The performance on the unknown 

target improved greatly since it was misclassified as one of the other two 29 percent of 

the time by both nets simultaneously.   In the remaining 71 percent of the cases, the 
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Figure 4: A schematic of a composite feedforward networks and periodic attractor net- 

work (PAN) that can be used to achieve controlled generalization. Each feedforward 

network outputs a certain label when initiated by an example from a certain region of 

object space. All feedforward networks cover the total desired space of examples from 

the object. The periodic attractor network binds the response labels of an object with 

its master label. Two master labels Tx or T2 for two different objects are shown. 
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Figure 5: The simplest composite network. The range profile is divided into two equal 

segments and fed to two identical single layer feedforward networks. The outputs of 

both these networks are concatenated and used to trigger the periodic attractor network 
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Figure 6: Cognition of the composite network as a function of the number of segments of 

range profiles (or modules of single layer feedforward networks). The network is trained 

on 25 percent of the data from the B52 and B747 scale models and tested on all data 

from these two models as well as a novel target (Space Shuttle). 

networks indicated their undecidedness by outputting contradictory or unknown labels. 

Using four similar networks on four equal segments of a range profile further decreased 

the rate of incorrect classification to 20 percent, in which case all four nets misclassified 

the Space Shuttle as a B52.   However the performance on range profiles from known 

targets also deteriorated since about 17 percent of the range profiles from both the B52 

and B747 triggered ambiguous responses since one out of four networks misclassified the 

target or output an unknown label. With 8 equal segments used (each 16 data points) to 

train 8 networks, some of the networks did not converge. This might be used to indicate 

the minimum length of a segment required for containment of relavent target features. 

The dynamic range and noise robustness of the segmented network are still quite good 

although with decreasing segment size the effect of noise becomes more pronounced. A 

summary of simulation results is plotted in Figure   6. It is seen that as the number of 

segments, Na, increase, the network discriminates against the unknown target better. 

However, its ability to recognize the known targets deteriorates to some extent. 

We also tested the network with different training target sets to analyse its asymmetry 

with respect to known and unknown target sets. When the B52 and Space Shuttle 

are used to train the single layered nets we observed that the net does not converge 

when four segments are used, i.e. not all of these segments are now linearly separable. 
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Figure 7: Cognition of the composite network as a function of the number of segments of 

range profiles (or modules of single layer feedforward networks). The network is trained 

on 25 percent of the data from the B52 and Space Shuttle scale models and tested on 

all data from these two models as well as a novel target (the B747). 

However even with two segments, the misclassification of the unknown target (the B747) 

is only 4 percent, down from 70 percent when only one network is used. However the 

undecidibility rate with two segments is rather high at 20 percent for the B52 and 11 

percent for the Shuttle. These results are plotted in Figure  7. 

One may ask if one needs to know in advance or can determine the number of segments 

needed to achieve maximum cognition.  The advantage of our cognitive scheme is that 

the extent of segmentation possible is determined by increasing the number of segments, 

until learning is not possible, i.e. the feedforward networks cannot extract features from 

segments smaller than a certain length.   One way to do this is to start by training 

networks on a small segment containing first ns points of the echoes of known targets, 

and progressively increasing the number of points, until the segment length becomes 

large enough to contain relavant features, and hence can be learnt. The length of the 

second segment can be similarly determined by using that portion of the echoes that 

were not used in the first segment.   The extent of segmentability of the echoes of the 

known radar targets will depend on the structural complexity as well as the similarity 

of these targets. This process is a way to achieve maximum differentiabilty (cognition) 

between different possible targets (known and unknown) based upon information from 

a finite number of known targets.   This differentiabilty or cognition can be increased 
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by using additional information about the known targets, which would enable one to 

generate more segments with additional features. Hence the chance that an unknown 

target matches a known target on all these segments is further reduced. In the limit 

when complete information is available about known targets, one can say that one can 

distinguish them from all other different unknown targets, even if information about 

these unknown targets is not available during training. As a corollary, the lesser the 

similarity between known and unknown targets, the lesser is the information required 

about the known targets to achieve this goal. 

6.3     The Need for Multisensory Information 

Consider a simple example that illustrates the effect of the amount of information made 

available to the network on its ability to differentiate between objects that are similar, 

i.e. have some similar characteristics. We are required to differentiate between different 

shapes of different colors, say red, blue and green balls, cubes and pyramids. Using a 

black and white camera (i.e. color information is not available), we can identify balls 

from among balls, cubes and pyramids by training someone on balls only. It is obvious 

that with only black and white information differentiating between balls of different 

colors is not possible. On the other hand, if one has only a device to measure the color 

(wavelength of radiation) of the objects, then one cannot differentiate between different 

shapes but can recognize a particular color from other colors if that color is among the 

colors used to train the network. In order to recognize a particular shape of a particular 

color, one needs to use both the black and white camera that provides shape information 

and the color measuring device. 

The above discussion and example also illustrates the role of multisensory information 

in reducing ambiguity between similar targets as well as imparting greater cognition to 

the composite network against unknown targets. We observed in the case of composite 

networks trained on the range profiles of some targets that their ability to discriminate 

against a novel target increases as the number of segments were increased provided the 

segment lengths are fixed, i.e. the amount of data within each segment is fixed. In 

the results cited, the novel target could be discriminated against from 80 to 96 percent 

of the aspects, depending on which targets were used in training the network. This is 

the maximum performance achievable using only range profile data.   To increase the 
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cognition ability of the network would require more information on the known targets, 

which would help by providing additional segments to make finer comparisons of the 

targets possible. Another important reason for using additional information is to improve 

the noise immunity of the system through larger signature segments. 

We have conjectured that using multisensory information should greatly improve the 

cognition of the radar target recognition system. To get a general idea of the type of be- 

haviour expected, we concatenated uncorrelated range profiles to simulate multisensory 

data.  The composite signal formed by such concatenation was constructed as follows. 

For a given target the available range profiles are divided into two equal groups. In our 

case, the 50 range profiles from 0 to 10 degrees from headon towards broadside consti- 

tute the first group, and the 50 range profiles over the adjacent 10 degree angle form the 

second group. The n-th range profile from the first group is then concatenated with the 

n-th range profile of the second group to form the n-th composite signal.  Hence from 

the 100 original 128 point range profiles we form 50 composite profiles, each with 256 

discrete samples. The halves of the composite range profiles are uncorrelated because of 

the angular separation of the range profiles from which they were formed. Hence these 

composite range profiles can be taken to represent loosely multisensory information as 

when for example range profile data would be concatenated with polarization infor- 

mation to form a multisensory target representation.  The lack of correlation between 

the polarization response and the range profile is a central assumption here. This lack 

of correlation helps also separate the target representations in the multisensory target 

signature space and this is desireable for enhancing cognition. 

The results of simulations with these composite signals are tabulated in Table 4 

and plotted in Figure 8 where the performance of networks trained on different targets 

is shown. The composite networks in this case had multilayered feedforward networks 

at the front end. Multilayered networks with one hidden layer of neurons were used 

since they are known to have more flexibility in partitioning the phase space that the 

simpler perceptrons [35]. The feedforward networks process non-overlapping segments 

(overlap d = 0) of the composite range profiles obtained by the process described in the 

foregoing paragraph. The learning parameter a and the momentum parameter ß are 

fixed at 0.75 and 0.5 respectively. The internal neural threshold is fixed at zero in all 

the simulations, since working at higher thresholds makes the networks more sensitive to 

noise and hence the undecidibility about known targets increases as noise in the system 
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Error (E) or Undecided (U) 

Ns Ni Nh N0 B52 B747 S.Sh. 

1 

2 

4 

8 

256 

128 

64 

32 

32 

24 

16 

10 

32 

32 

32 

16 

0 

0 

4(U) 

12(U) 

0 

0 

0 

6(U) 

100(E) 

98(E) 

50(E) 

0 

Table 4: Cognitive performance as affected by processing the composite range profiles 

in segments by multiple feedforward networks. The networks are trained on 50 per- 

cent composite range profiles of the B52 and B747 and tested on all composite profiles 

from these two targets as well as the unknown target (the Space Shuttle). There is no 

overlap between segments, and training parameters a and ß are fixed at 0.75 and 0.5, 

respectively. 

100 100 

Figure 8: Cognitive performance as affected by processing the composite range profiles 

in segments by multiple feedforward networks. The networks are trained on 50 percent 

composite range profiles of the B52 and B747 and tested on all composite profiles from 

these two targets as well as the unknown target (the Space Shuttle). 
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increases. One strong trend is evident from Table 4 and the corresponding plots: that 

the cognition capability of the system dramatically improves as the number of segments is 

increased. This is independant of the targets used in training and testing the networks. 

We note that with eight segments of 32 data points and therefore 32 input neurons each, 

the recognition capability of the system is very good although performance on known 

targets deteriorates to some extent, depending on which targets were used to train the 

networks. The test statistics are obtained by testing the network with one signature 

vector instead of the majority vote technique which we use later in this section. For 

example, when TJ = 50 percent of available composite range profiles of only the B52 and 

B747 are used to train the network, the Space Shuttle (unknown target) is classified 

erroneously from all its composite profiles when a single network is used. Using four 

segment networks reduces this misclassification rate by 50 percent with negligible effect 

on network performance on known targets. Doubling the number of segments to eight, 

the misclassification rate on the unknown target drops to zero. The undecidibility on 

known targets (the B52 and the B747, in this case) rises moderately: 12 percent for the 

B52 and 6 percent for the B747. 

When the B52 and Space Shuttle are used as known targets and the B747 as the 

unknown target (see Table 5 and Figure 9), the misclassification rates on the unknown 

target with 4 and 8 equal segments are 36 and 2 percent respectively. Increasing 

the number of segments is not possible since the segment length becomes too small for 

reasonable features to exist or be extracted and hence the net does not converge. The 

undecidibility on the known targets in this case, with 8 segments, is 20 percent for the 

B52 and 6 percent for the Shuttle. The maximum number of segments for which the 

nets converged is 9 and there was an overlap of 4 points between the segments in this 

case. This suggests that long composite signature vectors are desired and that is why 

multisensory information is important to consider. 

In the final combination, with the B747 and the Shuttle as the known targets and 

the B52 as the unknown target, the misclassification rates on the unknown target with 

4 and 8 equal segments are 22 and 8 percent respectively (see Table 6 and Figure 10). 

The undecidibility on the known targets, with 8 segments, is 8 percent for the B747 

and 6 percent for the Shuttle. In this case we were able to increase the number of 

segments to 14 without problems of convergence. However, the 14 segments had an 

overlap of four points and a length of 22 points.   The misclassification error on the 
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Error (E) or Undecided (U) 

Ns Ni Nh N0 B52 S.Sh. B747 

1 256 32 32 0 2(U) 94(E) 

2 128 24 32 0 0 60(E) 

4 64 16 32 12(U) 0 36(E) 

8 32 10 16 20(U) 6(U) 2(E) 

9 32 10 16 24(U) 8(U) 2(E) 

Table 5: Cognitive performance as affected by processing the composite range profiles 

in segments by multiple feedforward networks. The networks are trained on 50 percent 

composite range profiles of the B52 and the Space Shuttle and tested on all composite 

profiles from these two targets as well as the unknown target (the B747).There is no 

overlap between segments, and training parameters a and ß are fixed at 0.75 and 0.5, 

respectively. For the case of 9 segments, the overlap is 4, and a and ß are fixed at 0.6 

and 0, respectively. 
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Figure 9: Cognitive performance as affected by processing the composite range profiles 

in segments by multiple feedforward networks. The networks are trained on 50 percent 

composite range profiles of the B52 and Space Shuttle and tested on all composite profiles 

from these two targets as well as the unknown target (the B747). 
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Error (E) or 1 Undecided (U) 

N. Ni ^ N0 B747 S.Sh. B52 
1 256 32 32 0 0 50(E) 

2 128 24 32 0 0 44(E) 

4 64 16 32 0 0 22(E) 

8 32 10 16 8(U) 6(U) 8(E) 

9 32 10 16 0 0 10(E) 

11 26 8 16 2(U) 6(U) 4(E) 

12 25 8 16 8(U) 6(U) 2(E) 

14 22 8 12 8(U) 6(U) 2(E) 

Table 6: Cognitive performance as affected by processing the composite range profiles 

in segments by multiple feedforward networks. The networks are trained on 50 percent 

composite range profiles of the B747 and the Space Shuttle and tested on all composite 

profiles from these two targets as well as the unknown target (the B52). The overlap 

and learning parameters for 1 to 9 segments is the same as Table 8.12. For 11 segments, 

overlap is 3 and a and ß are 0.5 and 0 respectively. For 12 and 14 segments, overlap is 

4 and a and ß are 0.4 and 0.6 respectively. 
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100 

Figure 10: Cognitive performance as affected by processing the composite range profiles 

in segments by multiple feedforward networks. The networks are trained on 50 percent 

composite range profiles of the B747 and Space Shuttle and tested on all composite 

profiles from these two targets as well as the unknown target (the B52). 

unknown target was reduced to 2 percent (with 14 segments) without any increase in 

the undecidibility on the known targets. The degree of segmentation possible is hence 

seen to be a function of the known targets, used to train the networks. It can be seen 

that with more complex targets, the maximum number of segments possible is smaller 

than with less complex targets. It is intuitive that separating more complex features is 

more difficult and hence a greater number of sample points per segment are required to 

define them i.e. more complex features require a broader context. An analogy can be 

seen with the problem of extracting a generating rule from a given series of numbers. 

If the series is a simple one, such as 1, 2,3,4,..., one can immediately see from a few 

numbers that the i-th. element is simply gotten by adding 1 to the (i - l)-th element. 

A more difficult sequence may require many more elements before a generating rule can 

be extrapolated. 

If the maximum number of segments is fixed at eight, we see that the misclassification 

error is reduced to zero for some cases but for other training sets it has a small positive 

value. The majority vote technique in which one decides on the basis of responses 

to three aspect queries from the target, can then be used with advantage once the 
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Error (E) or Undecided (U) 

B52 B747 S.Sh 

Ns No R A No R A No R A 
1 

2 

4 

8 

0 

0 

0 

16 

0 

0 

0 

6.5 

0 

0 

0 

15.2 

0 

0 

0 

8 

0 

0 

0 

1.8 

0 

0 

0 

0.9 

100 

92 

46 

6 

100 

98 

43 

1 

100 

98 

41 

0 

Table 7: The effect of majority vote on cognitive performance of the multiple segment 

network. "No" indicates that no vote is taken, "R" indicates a vote of 3 randomly 

selected composite profiles, and "A" indicates a vote of adjacent profiles separated by 

an angular distance of 0.2°. The network was trained with 50 percent of the data from 

B52 and B747 and tested with all profiles from these two targets and an unknown target 

(Space Shuttle). The learning parameters used are a = 0.4 and ß = 0.6 except when 

Ns = 8, in which case a = 0.4 and ß = 0 are used. 

misclassification rate has been reduced to less than five or six percent, as illustrated by 

Table 7. The majority vote technique is applied in the following manner. The networks 

are initiated by three radar signatures in succession and the outputs are recorded. If 

the network responds at least twice identifying a given target, positive identification is 

indicated. The three target signatures can be selected randomly over a given angle or 

can be adjacent. Both cases are shown, and give similar results. We used 1000 trails in 

each case. Note that in a practical situation the adjacent range profile case would be 

much more appropriate, as when the radar tracks a moving target and target signatures 

of adjacent aspect angles are available to the network to make a decision. 

6.4    Performance in Noise 

The performance of networks was also evaluated when noisy signals with varying levels 

of zero mean Gaussian noise corrupted the composite signal. If Ps is the signal power 

and Pn is the noise power in the original signal then the signal to noise ratio SNR is 

defined as 

SNR(dB) = 10%(^) (5) 
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SNR in dB 

B52 B747 S.Sh 

Ns 8.5 2.85 1.1 8.5 2.85 1.1 8.5 2.85 1.1 

1 0 2(U) 4(U) 0 0 0 98(E) 92(E) 96(E) 

2 0 0 10(U) 0 0 6(U) 88(E) 74(E) 72(E) 

4 6(U) 6(U) 30(U) 0 4(U) 10(U) 36(E) 26(E) 34(E) 

8 34(U) 52(U) 76(U) 34(U) 50(U) 68(U) 6(E) 8(E) 2(E) 

Table 8: The performance of multiple segment networks with different levels of noise. 

"E" indicates erroneous decisions and "U" indicates that the networks are undecided. 

The networks were trained by using 50 percent of the composite profiles from the B52 

and B747 and tested on all profiles from these two targets as well as an unknown target 

(Space Shuttle). 

The SNR of the original signal varies between 15 dB and 22 dB; the mean value is about 

17 dB. If zero mean Gaussian noise, whose probability density function g(x) is given by 

1 
9(x) = 

\/2lr" 
=-*2/2 (6) 

(7) 

is used to contaminate the signal, the new SNR is given by 

SNR(dB) = lOlog^-^ 

In the above equations a; is a random variable, a is the standard deviation of x about 

zero mean, and a2 is the variance and also the Gaussian noise power. The results of 

network performance with various signal-to-noise ratios are tabulated in Table 8 and 

plotted in Figure  11. 

We see that as the length of one segment decreases, the system becomes more prone 

to be affected by high levels of noise. The effect of noise is less severe on performance of 

unknown targets than on recognition of known targets. For example with 4 segments, 

each of length 64, moderate levels of noise (upto SNR = 2.85) have little effect on 

network performance. With 8 segments of length 32 each, the performance on known 

targets deteriorates appreciably since the net cannot decide about their presence from 

an increasing number of the target aspects. The general conclusion we can draw from 

these results is that for good performance we need a reasonable number of segments of 

sufficient length.  One way to achieve this is to include polarization information in the 
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Figure 11: The performance of multiple segment networks with different levels of noise. 

"E" indicates erroneous decisions and "U" indicates that the networks are undecided. 

The networks were trained by using 50 percent of the composite profiles from the B52 

and B747 and tested on all profiles from these two targets as well as an unknown target 

(Space Shuttle). 
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signature of the targets, i.e. to work with signature vectors consisting of concatenation 

of range profile information with polarization response (x vs. frequency and ip vs. 

frequency) of the target. We will elaborate on this point in section 7.1. 

7    Designing a Radar Recognition System 

Having described the basic aspects of a radar recognition system based on models of 

neural networks, we can tie our results together to propose a practical and autonomous 

system. Such a system is shown schematically in Figure 12, and can be described as 

a feature binding and cognitive hierarchial network. The system acquires interesting 

properties from processing partial spatial representations of a given object followed by 

an integration of partial decisions at the end. This approach offers some attractive 

benefits, such as 

1. Modularity is introduced naturally, and hence the scaling problem of learning is 

considerably reduced. The problem of scaling can be explained by saying that 

neural net models are tested on toy problems do not always translate linearly to 

real (bigger) problems in terms of network size and/or learning time. 

2. Reduces or eliminates ambiguities by making the cognition process dependent on 

the simultaneous occurence of a set of events at different locations, for example, 

like hitting a jackpot in a gambling machine, in that the correct window symbols 

must occur simultaneously in order that a winning condition (cognition in our 

case) does occur. See the one armed bandit analogy in Figure   13. 

3. Enables the introduction of hierarchial processing, i.e., different levels of attractors, 

each level reducing the dimensionality of data but increasing the probability of 

correct recognition. 

In the following subsections we will elaborate on different aspects of the system and how 

they complement each other to achieve excellent cognitive performance. 

7.1     Signature Representations of Targets 

Suppose one obtains representations for all possible manifestations of an object, that can 

occur in a practical setting. In the context of our ATR work, this means we have samples 
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Figure 12: A feature binding hierarchical cognitive network 
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Figure 13: One armed bandit analogy of the coincidence of events in a cognitive system 

to signal positive cognition. 

of normalized range profiles and/or all depolarization signatures of a given target scale 

model, falling within an expected solid angle of encounter for that target.   Note that 

the representations are independent of the range to the target by virtue of the sensor 

characteristics used to produce them. Both types of signatures are otherwise influenced 

by noise and clutter and hence from the outset any cognitive system must be robust. 

Schematic depictions of the different types of range-independant target representations 

are shown in Figure   14(a).   The range-profiles basically contain amplitude and phase 

information while the plots of ellipticity and inclination angles of the polarization ellipse 

of the echo versus frequency give the polarization information.   One can concatenate 

these representations (see Figure   14(b)) to produce composite multisensory signatures 

which are characteristic of given targets.  Assume that in the solid angle of encounter 

of interest for a given target, there are Nr such signatures. Let all these signatures be 

partitioned into Nb bins or groups, each containing N = Nr/Nb signatures.  In Figure 

15, all members of one group are arranged in one plane, and correspond to the signatures 

within a small solid angle. The signatures are then partitioned into JVC columns. In the 

figure, Nc = 4 and the columns are labeled A,B,C and D. The data in each representation 

is viewed as containing specific features of the object. Some segmentation will be natural, 

for example the plots of the two polarization parameters, while others are somewhat 
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arbitrary divisions. To make the segments larger and the transition smoother, one can 

use overlapping segments. As illustrated by the simulation results given in the previous 

section the number of columns and bins is an important design parameter of the system 

and ultimately influences the performance of the network. Figure 12 shows feedforward 

clustering networks for bin 1. There would be a total of Nb x Nc such networks. Each 

network associates the data in its column with a given binary label and hence there would 

be Nb x Nc labels, which are not necessarily all distinct. Of course a given signature 

vector would trigger one label from each network. 

7.2     Operational Principle of the System 

The operation of the network can be visualized in the following manner. Figure 16 shows 

the expected angles of encounter of two known targets. For training the network, each 

solid angle of encounter is subdivided in smaller solid angles called bins. For example, 

five bins are shown in the figure for each target. A signature vector of a given target 

within an expected angle of encounter would then he in one of these bins. Each signature 

vector is divided into a certain number of segments, labeled A, B,C, As an example, 

each bin which contains a certain number of signature vectors is shown divided into 

three segments in Figure 16. The signature segments are fed into banks of feedforward 

networks, each trained to recognize a given target over a small angle of encounter by 

associating mini-labels of the target with its corresponding signature vector segment. For 

example, if the target signature belongs to bin 1 of target 1, its segments are fed into all 

the banks of networks, each bank containing 3 networks in our case. Then the networks 

in the bank shown on the right will output mini-labels L\A, LIB and Lie when initiated 

by segments A, B and C of the signature vector. These mini-labels are concatenated 

to form a larger composite object label, C\\ in this case, representing the particular 

solid aspect angle of the target. If the target is seen at another aspect angle contained 

in another solid angle, another bank of networks forms the corresponding label of the 

target associated with that solid angle. With proper design of the system, the probability 

that another bank will output C\\ or another target's label is negligible. All the binary 

composite labels belonging to one target are stored with a master label for that target 

in a periodic attractor network shown in Figure 16. For two targets we would have 

two isolated, i.e., non-intersecting periodic trajectories stored in the same network. For 
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example, the composite labels Cn, C12, C13, C14 and C15 which represent the response of 

banks of networks to target signatures from the five bins belonging to target 1, are stored 

in a closed trajectory with the master label L\. If a known target appears then it will 

trigger mini-labels, say L\A, LIB 
and Lie representing the target and when concatenated 

together will form one of the vectors stored on the trajectory of the given target, C\\ in 

this case. C\\ will then trigger the trajectory containing the trajectory containing the 

master label L\. We call this event "Jackpot" because of the similarity of what happens 

in hand operated gambling machines : alignment of certain labels in parallel rotating 

wheels signifies a jackpot (see Figure 13). If the composite representation is of a novel 

object, the chances of it erroneously producing a composite label vector stored in one of 

the two periodic attractors and thereby triggering a "Jackpot" in the same bin will be 

very remote and this furnishes the basis for robust cognition. The recognition process 

outlined above is neatly summarized in Figure 17. We have in this argument rested on 

the assumption that the periodic attractor trajectories representing different objects are 

appropriately isolated. 

7.3     The Role of the Periodic Attractor. 

The periodic attractor network serves to provide a binding mechanism by which the 

feature outputs from the feedforward network banks are bound in the final step of 

the cognition process. It complements the function of the feature forming feedforward 

networks which furnish generalization and provide robustness against noise and scaling 

of the signal level, i.e. have a wide dynamic range. Although the fibres of cognition lie in 

the multiple local decisions arriving in parallel at the feedforward net outputs, the task 

of selectively weaving them into a substantial cognitive fabric is done by the PANs. Since 

one ultimately wants to implement the networks in hardware some comments about the 

robustness of the periodic attractor nets against setting weights with a given imprecision 

as well as element failure are in order. 

M binary vectors (A^-dimensional) can be stored as stations on a sequential trajec- 

tory in a fully connected N neuron network in the following manner. We denote the 

synaptic strength from neuron j to i denoted by Wij. For simplicity, consider stor- 

ing only one trajectory. The m-th vector on the trajectory is denoted by V^ = 

(i>!    , v2
m ,..., u|    ,.. •, Vx ').  The WijS thus form an N x N square matrix W.  Dur- 
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ing learning, the net updates its state vector synchronously according to V{ = B{u{ — 

Gneuron, 6high,&iow), where U{ = Yij WijVj is the action potential of the i-th neuron, 0neuron 

is its internal threshold, and 9h.igh and 6iow are the upper and lower limits of a neural 

band gap function B{.) used during learning to ensure "good" learning. During the 

recognition phase, 6high and 6iow are set at mean level, 0.5, which gives rise to zero band 

gap during recall. It is observed that using a zero band gap during the training phase 

produces a network with negligible tolerance to setting weights with some imprecision. 

Also filling the network more and more (M « N) reduces this tolerance whereas with 

less filled networks (M <C N) the trajectory can be triggered by more and more vectors. 

Hence it is necessary to tailor the periodic attractor net to provide the desired isolation 

of the trajectory from the rest of the phase space and to allow some imprecision in 

setting weights in hardware. 

8    A Design Example 

It is best to illustrate the operation of the envisioned target recognition system with 

a simple design example. Consider a situation where one needs to recognize only two 

targets from their signature vectors, i.e. to be able to tell from a given signature vector 

whether it comes from these known objects or not, and if yes, then which one. To 

simplify the analysis, assume that the most probable target aspects lie in a solid angle 

of 40° in elevation, extending from 20° to 60° in elevation, and 70° in azimuth extending 

from head-on to both broadsides of the target. Note that for symmetric targets this 

translates to an azimuth angle of 140 degrees. If we choose the bin size to be 20 by 20 

degrees, then the number of bins for one target is Nb = 70x 40/20 x 20 = 7. The number 

of signatures required per bin for teaching the feedforward networks would depend on 

the complexity of the targets in the set of targets to be encountered. For the scale 

model targets we have used a choice of 0.5° and 1° as the angular distance between 

adjacent samples in azimuth and in elevation is appropriate. This estimate is based 

upon the variation of range profile correlations as a function of the difference in the 

aspect angles of the three targets (B52, Boeing 747, and Space Shuttle). For example, 

the range profiles of the B52 scale model have useful correlation (which is above the 

cross-correlation between different targets) over an angle of 0.8° in azimuth. The angles, 

over which useful correlation exists, for other two targets are greater. Since, the target 
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extent in the elevation direction is less, the angle over which useful correlation exists 

will be greater. With this consideration in mind we can calculate the number of samples 

required per bin per target to be about Nsig = 20 x 20/0.5 x 1.0 or about 800 samples. 

In this example, one would need 7 x 800 = 5600 equally spaced samples per target to 

provide a library of echoes from which the training set to teach the networks can be 

chosen. If the number of segments is chosen to be Na = 4, as shown in the schematic 

of the cognitive system, the total number of feedforward networks in the system is 28, 

arranged in 7 banks of 4 each. With the output neurons of each feedforward network 

chosen to be 8, the integrated label at the output would be 32 bits. For each bank 

a different output label can be selected and hence there are 7 different possible labels 

belonging to one target and associated with its different aspect regions. These 7 labels 

can be stored with a master label for the target for a total of 8 labels on a closed 

trajectory in a periodic attractor network. Similarly for the other target, we can store 

8 labels on a different trajectory that does not intersect the first trajectory in the same 

periodic attractor network. 

The system works as follows. The signature of an unknown target is input in segments 

to all the banks in parallel. The outputs from the networks of each bank are concatenated 

into a composite label or feature vector and used to interrogate the periodic attractor 

network. This can be done serially by applying the output of each bank, observing the 

behaviour of the periodic attractor network before applying the output of the next bank 

and so on. One can also do this operation in parallel by using seven identical periodic 

networks, but as the number of banks increases, this may be impractical and one can 

have several banks sharing a periodic attractor network.   If all outputs from a bank 

are consistent, i.e.  correspond to a given target, then the concatenated output lies on 

that target's periodic attractor and hence will trigger it.   If the output labels are not 

consistent, i.e. do not belong to the same target, the concatenated output has a certain 

Hamming distance from the vectors stored on the two trajectories and will not trigger 

any one, provided the trajectories are well isolated. A feed-forward network in a bank 

outputs a mini-label belonging to one of the two objects depending on the similarity of 

its input to the signature segments of the targets used to teach the network. Hence, by 

choosing the length of these labels and their Hamming distances from each other one 

can determine the minimum Hamming distance of any concatenated label vector not on 

one of the closed trajectories, from the trajectory.  What we need then is to have the 
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Figure 18: The isolation I of the periodic attractor network as a function of weight per- 

turbation. The isolation-weight perturbation curves for different values of 6n (encircled) 

are drawn. The network is half-filled, i.e. M = 0.57V. 

trajectories isolated enough so as not to be triggered by one of these "lurking" vectors, 

which he at a minimum distance from them. These ideas are illustrated quantitatively 

below. 

We have chosen the length of the outputs from the segments to 8. Let the minimum 

Hamming distance, dH, between the different mini-labels be 5. The concatenated output 

will be TV = 32 bits in length, and the minimum distance of a composite output not on 

the trajectory from any label on the trajectory will be dHmin = 5. Hence we need a 

periodic attractor with as isolation such that no vector at a Hamming distance greater 

than dH = 4 triggers one of the trajectories. Based on this value of the minimum 

isolation required, and a given tolerance in setting weights in hardware, we proceed to 

find out the other parameters of the net, namely, 6neuron, 0high and 0low. 9neuTon, the 

internal threshold of a neuron, mainly controls the degree of isolation of the periodic 

attractors. 6high and 6iow during training, mainly determine the tolerance of setting 

weights with a given imprecision in the periodic attractor. 

Figure 18 shows how the isolation and tolerance in weight values change with increas- 

ing the internal neural threshold, 0neuron. The values of 6high and 6iow are fixed during 

training at 0.8 and 0.2 respectively, while during the recall phase both are fixed at 0.5. 
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At low values of the internal neural threshold, the isolation of the trajectories is very 

low, although the tolerance to weight imprecision is reasonably good. As the threshold is 

increased, isolation improves with a corresponding reduction in the tolerance to weight 

imprecision. We find that the required value of the internal neural threshold to achieve 

required isolation of dH = 4 is 6neuron = 4. The tolerance allowed in setting weights in 

hardware is about 6%. If a greater tolerance in weights is desired, one can increase the 

length of the segment output lables and hence increase the minimum Hamming distance 

of vectors outside the trajectories from the trajectories. 

9     Summary and Discussion 

This paper addresses the issue of how the neural paradigm can be applied to an elec- 

tromagnetic scattering problem. Traditionally, the inverse scattering problem has been 

a central issue in electromagnetics. The approach is to invert the measured data. This 

problem is known to be ill-posed and therefore difficult to solve. Regularization methods 

are applied to facilitate solution. 

Inverse scattering requires use of a priori knowledge of the mechanism involved in 

creating the measured data. Living organisms seem to be adept at solving inverse 

problems. The neural paradigm of information processing is therefore important. The 

approach adopted in this paper is applicable to other problems in inverse scattering and 

not only to ATR. 

Cognition, which is an important attribute of biological systems, has been generally 

neglected in most of ANN research. We have explained in detail why it is crucial to 

success in many applications. We have also argued in support of the hypothesis that 

to make a neural network cognitive, it must be nonlinear, dynamical and computing 

with with diverse attractors. Also it must be capable of bifurcating between them 

depending on the nature of the objects being presented to the network. Our results 

also indicate why multisensory information may be of great importance in enhancing 

cognition and reducing ambiguities between similar objects. It is worth noting that the 

composite hierarchial network we describe handles multisensory information, in the form 

of concatenated multisensory signature vectors, in a natural way. 

Usually neural net architectures and learning methods are adapted to tasks that a 

system is required to perform, as evidenced by many biological systems.   The radar 
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identification problem also has its own peculiarities. Different neural architectures with • 

their associated modes of operation offer diverse potential, not always well quantified, 

and it is a tricky business to put them together to have the desired effect. In this work we 

found it necessary to couple different types of attractor networks as a means to achieving 

performance that is not achievable by simpler networks alone. 

A practical concern in neural network resaerch is that of scalibility. A legitimate 

complaint is that neural net models are generally tested on toy problems and that trans- 

lating them to real problems is not feasible or straightforward in terms of time and 

network size. One of the advantages of gained using composite networks, as proposed in 

this paper, is that the problem of scalibility is addressed efficiently. A certain composite 

network, comprising the feature forming and feature binding networks, divides its envi- 

ronment into two disjoint domains: that of objects known to it and that of all the other 

objects and signals. Hence if new objects have to be learned, one does not need to retrain 

this network to include the information about new objects in addition to relearning the 

"already known" objects. The new objects can be added through additional composite 

network modules. This feature is very helpful in enabling one to train the networks only 

once. This means that even somewhat prolonged training times maybe acceptable. The 

feature of data (signature vector) segmentation ensures that each modular label forming 

network is relatively small and hence its training time is not as protracted as compared 

to the traditional approach when all the data is to be taught to a single large network. 

We have worked with very simplified models of neural networks in trying to realize 

certain characteristics which are critical to the solution of the recognition problem. 

We feel that more realistic networks, for example those incorporating the temporal 

dimension would provide one with increased power and flexibility to approach such 

problems. For example in the feedback periodic attractor network we have used we 

have to ensure synchronous operation (update of state vector), possibly by external 

means. Biological evidence suggests that groups of neurons can become sychronized 

under certain conditions to operate as a synfire chain [36], or that trajectories can be 

realized in the state space of a network with asynchronous operation. Work along these 

lines is already being pursued in our work. 

The use of multisensory information in facilitating recognition has been indirectly 

demonstrated. This concept needs to be explored further, specially in finding the effects 

of using increasingly diverse modalities of information in increasing not only the perfor- 
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mance of the cognitive system but also the cost of acquiring that additional information.' 

Other related aspects such as how uncorrelated information is used and can be beneficial 

need to be looked into to arrive at some knowledge of recognition phenomena used by 

various biological systems. 
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11 Appendix 

We here describe and present results obtained with a simple training algorithm to learn and 

recall arbitrary sequences of pattern vectors in a fully connected artificial neural network, i.e., 

feedback network, and synchronous update. Note that no requirement about the 

orthogonality of patterns is made. We are given K sets of Mk ^-dimensional pattern 

vectors to be stored as K different sequences in the N-neuron network. Let us start with 

a blank memory so that w\f=0 for all i, j = 1,2,..., N. Consider the case when only 

one sequence is to be stored. 

When an m-th pattern, u(m), is presented to the network it produces an output, o(m), 

which is compared with the desired output, v{m+1\ and based on this the weights are 

updated as follows: 

w\r]=«#+A(eMm+i) - «rMm)) (8) 

where A is a positive learning parameter. The training process is continued until all the 

patterns have been stored in the desired order. 

The method we have described above produces a network with the given states stored 

on open or closed trajectories. However, the isolation of the trajectories from the rest 

of the network phase space is uncontrolled. For the radar cognition scheme described in 

this paper, the isolation of the trajectories has to be controlled within prescribed limits. 

We would also need to be able to set the weights of the network with some tolerance, when 

implementing the network in hardware is contemplated. There are two parameters of interest 

that determine these characteristics of the network: the internal threshold of the neurons and 
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Figure 19: The neural bandgap function used during the training phase of the periodic 

attractor neural network. 

the output function of the neuron. Raising the threshold of the neurons improves the 

isolation of the trajectories learned by the network, but also makes the performance of 

the network more sensitive to perturbations of synaptic weights. The flexibility to set 

weights with some tolerances is important when one needs to implement the network in 

hardware. This flexibility can be achieved by training the network with a bandgap or 

deadzone neuron output function as described below. 

Assume that the net updates its state vector according to the neuron function u,- = 

B{ui, 0neuron, Ohigh,0iow)i shown in Figure 19, where u,- = J2j WijVj is the action potential 

or activation of the i-th neuron, 6neuron is its internal threshold, and Ohigh and &iow are 

the upper and lower limits of a band gap used during learning to ensure "good" learning. 

Learning is then continued until the responses of all individual neurons to all patterns to 

be stored are either above 8neuron + 8high or below 6neuron + 8iow. During the recognition 

phase, both 8 high and 8iow can be set at mean level, 0.5, and a certain distortion in the 

input or synaptic weights can be rectified due the two buffer zones above and below 

the mean level, which were created during the learning phase. We observe that using a 

zero band gap during the training phase produces a network with negligible tolerance 

to setting weights with some imprecision. Also filling the network with more and more 

patterns (M ~ Ar) reduces this tolerance whereas with less filled networks (M <C N) the 

trajectory can be triggered by more and more vectors. This illustrates the need to tailor 

the periodic attractor net to the situation at hand, vis-a-vis the amount of isolation of 

the trajectory desired and the variation allowed in setting weights in hardware. 
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Figure 20:   The number of learning cycles needed by a 32 neuron network to learn a 

sequence as a function of the number M of patterns in the sequence. 

The number of learning cycles needed to learn M patterns or vectors using the above 

procedure is shown in Figure 20 for a neural network of N = 32 neurons. The stored 

sequences consisted of pattern vectors whose density p was about 0.4. The density p of 

a pattern vector is defined as the ratio of the number of l's in the vector to the total 

number of its elements. The minimum Hamming distance between any pair of vectors 

in a given sequence was dHmin = 6. Similar behaviour is obtained for N = 64 and 128. 

It is seen from Figure 20 that learning is rapid as long as M < N. As M increases 

beyond TV the number of learning cycles, and hence the learning time, required to learn 

the sequence of given pattern vectors increases exponentially. 

As the internal threshold of the neurons increases the isolation of the trajectories 

learned by the network increases until it becomes a true filamentary trajectory, i.e., any 

vector which is not designed to lie on the trajectory does not trigger it. However, it 

might be desireable to allow a trajectory with a more or less controlled narrow region 

of attraction around it, so that an initiating vector lying in that region can also trigger 

the periodic attractor and the one outside it does not. An important point to note here 

is that unfamiliar states end in a sparse phase space of the network, most of them going 

to a ground attractor. Hence the network's response to unknown inputs is one of very 

low neural activity, whereas familiar states trigger a cyclic response. Those states that 

are partially familiar, initially elicit some firing before going to the sparse regions. 

The isolation of the trajectories to be stored is mainly controlled by the internal 
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threshold of the neurons. We define the isolation, 7, of the network as the maximum 

Hamming distance, Dmax, of vectors that can trigger the trajectory, from the stored 

trajectory, for given values of internal neuron threshold and weight perturbation. That 

is, any vector with a Hamming distance, D > Dmax, from the trajectory will not trigger 

the trajectory. The Hamming distance, D, of an arbitrary vector from a stored trajectory 

is the minimum distance from the vectors on the trajectory. The perturbation P of the 

network is the percentage error in setting weights of the synapses between neurons. 

The boundary of the periodic attractor is fractal in that not all vectors at a given 

Hamming distance from the trajectory will trigger the periodic attractor. Therefore in 

designing the network for isolation from a region beyond some Hamming distance D we 

actually design for isolation beyond a Hamming distance Ds = D/ f where / is a safety 

factor greater than one. Once the design Hamming distance Ds is decided, we have to 

find by experiment the values of three network parameters, namely 9neuron the internal 

threshold of the neurons, and 9high and 9\ow for the neural bandgap function, which is 

used during the training phase. 

In Figure 21, the isolation I (in dH: Hamming distance) of the network is plotted 

as a function of perturbation in weights as a measure of the robustness of the network. 

Each original learned weight is perturbed by randomly increasing or decreasing it by a 

fraction of its value, depending on the amount of perturbation P desired. In this network 

of N = 32 fully-connected neurons, M = 16 pattern vectors are stored on one closed 

trajectory. The internal neuron threshold is held fixed at 0neuron = 4, and was arrived 

at experimentally, assuming that an isolation of D = 6 is required. A safety factor of 

/ = 2 was used to design for an isolation of Ds = 3. 

As can be seen, the isolation fluctuates for various values of perturbation until for 

greater perturbations of weights, the trajectory is completely lost. Also, as evident from 

Figure 18 the minimum isolation increases as the internal threshold of the neurons 

is raised. For our application, it is the minimum isolation that we will use in the 

region where the the trajectory is recognized. As noted earlier initiating the network 

with unfamiliar states results in sparse or no activity. Hence the network's response to 

unknown inputs is one of very low neural activity, whereas familiar states trigger a cyclic 

response. Those states that are partially familiar, initially elicit some firing before going 

to the sparse regions. 
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